Open
Close

Реабсорбция глюкозы происходит. Реабсорбция и секреция в почечных канальцах. Механизмы реабсорбции глюкозы. Виды транспортировки жидкости для фильтрации

Главная функция почек – переработка и удаление из организма токсичных веществ и вредных соединений. При нормальной работе этого органа у человека стандартное артериальное давление, происходит формирование гормона эритропоэтина, осуществляется сбалансированный гомеостаз. Процесс образования мочи осуществляется в три важных этапа: фильтрация, реабсорбция и секреция. Реабсорбция – это поглощение из мочевой жидкости компонентов разного происхождения.

Обратное поглощение веществ осуществляется через почечные каналы при этом принимают участие эпителиальные клетки. Последние реализуют функцию абсорбента, именно в них распределяются элементы, в них содержатся продукты фильтрации. Также осуществляется процесс впитывания глюкозы, воды, аминокислоты, натрия, различных ионов, они транспортируются прямо в кровеносную систему.

Химические вещества, которые являются следствием распада продуктов, в большом количестве содержатся в организме, их отфильтровывают именно эти клетки. Всасывание осуществляется в проксимальных каналах. После этого механизм фильтрации химических элементов перемещается в петлю Генле, собирательные трубочки и дистальные извитые канальца. Этап реабсорбции отличается максимальным поглощением нужных для правильной работы организма ионов и химических веществ. Существует несколько путей поглощения органических соединений:

  1. Активный. Перемещение веществ осуществляется против электрохимического, концентрированного градиента: натрий, магний, глюкоза, аминокислоты и калий.
  2. Пассивный. Отличается передачей нужных веществ по осмотическому, концентрационному, электрохимическому градиенту: мочевина, вода, бикарбонаты.
  3. Перемещение посредством пиноцитоза: белок.

Процессы реабсорбции в канальцах почек

Уровень и скорость очистки, перемещения нужных элементов и соединений зависит от различных факторов. В первую очередь от продуктов питания, образа жизни, наличия заболеваний хронического типа. Каждый из этих аспектов отражается на функционировании всего организма, ведь при нарушении работы почек страдают все системы.

Существует несколько разновидностей реабсорбции, каждая из них зависит от области канальцев, в которых осуществляется распределение полезных компонентов. Выделяют два вида реабсорбции:

  • дистальный;
  • проксимальный.

Последний отличается возможностью этих каналов переносить и выделять из мочи первичного типа белок, аминокислоты, воду, витамины, хлор, натрий, витамины, декстрозу и микроэлементы. Существует несколько аспектов данного процесса:

  1. Вода выделяется за счет пассивного механизма перемещения. Качество и скорость этого процесса во многом зависит от присутствия в продуктах очистки щелочи и гидрохлорида.
  2. Транспортировка бикарбоната осуществляется за счет реализации пассивного и активного механизма. Интенсивность впитывания во многом зависит от части органа, через который осуществляется перемещение первичной мочи. Прохождение через канальцы осуществляется в динамичном режиме. Поглощение через мембрану нуждается в некотором количестве времени. Пассивная транспортация отличается уменьшением объема урины, а также усилением концентрации бикарбоната.
  3. Перемещение декстрозы и аминокислоты осуществляется за счет эпителиальной ткани. Эти элементы локализированы в щелочной зоне апикальной мембраны. Данные компоненты поглощаются, при этом образуется одновременно гидрохлорид. Процесс отличается уменьшением концентрации бикарбоната.
  4. При выделении глюкозы происходит максимальное соединение с перемещающими клетками. Если концентрация глюкозы существенная, тогда увеличивается показатель нагрузки на транспортирующие клетки. Этот процесс приводит к тому, что глюкоза не переходит в систему кровоснабжения.

Процессы, происходящие в проксимальном канальце
(желтым цветом обозначен активный Na+,K+-транспорт)

Проксимальный механизм характеризуется максимальным поглощением белка и пептидов. В этом случае поглощение веществ осуществляется в полную силу. На очистку приходится только 30% от общего количества питательных веществ. Дистальная разновидность изменяет конечный состав урины, а еще оказывает влияние на концентрацию органических соединений. На этом этапе осуществляется поглощение щелочи и перемещение пассивного типа кальция, калия, хлорида и фосфатов.

Если реализуется процесс неполноценной фильтрации либо возникла дисфункция очистительных органов, тогда есть высокая вероятность возникновения всевозможных патологий и проблем. Все из них имеют характерную симптоматику и требуют незамедлительного лечения, в противном случае можно добиться серьезных осложнений. К таким проблемам относятся следующие аспекты:

  1. Нарушение канальцевой реабсорбции. Уменьшение либо увеличение всасывающей способности, что проявляется в недостатке воды, ионов и органических соединений прямо из просветов канальцев. Дисфункция появляется из-за уменьшенной активности транспортирующих веществ, нехватки макроэргов и переносчиков, а также повреждения эпителиального слоя.
  2. Почечные синдромы являются следствием сбоя ритма мочеиспускания, диуреза, изменения оттенка мочи и её состава. Эти синдромы вызывают , почечную недостаточность и тубулопатию.
  3. Проблемы с секрецией эпителиальных клеток. Повреждение дистальных отделов каналов, механическое воздействие на мозговой/корковый слои либо ткани почек. При наличии дисфункции высока вероятность возникновения внепочечной и почечной симптоматики.
  4. Олигурия – объем суточной урины уменьшается, при этом удельный вес мочи повышается.
  5. Полиурия – является диурезом, удельный вес жидкости уменьшается.
  6. Нарушение гормонального баланса. К такому результату приводит интенсивное производство альдостерона, в результате чего повышается всасывание натрия, что провоцирует большое скопление жидкости в теле, за счет чего уменьшается количество калия и появляется повышенная отечность некоторых частей тела.
  7. Проблемы со структурой эпителия. Данная патология является главным фактором, провоцирующим отсутствие контроля за концентрацией урины.

Олигурия – это состояние, при котором снижена продукция мочи в организме

Точная причина негативного состояния организма устанавливается за счет лабораторного анализа мочи. Именно поэтому при любом ухудшении состояния здоровья, следует обратиться в медицинское учреждение. После ряда диагностических мероприятий можно установить точную причину патологии. На основе полученных данных составляется наиболее целесообразный, рациональный и доступный план лечения.

Чтобы точно определить механизм течения проксимальной реабсорбции, нужно определить уровень концентрации глюкозы в теле, ориентируются на самый большой показатель. Лабораторная оценка имеет ряд очень важных аспектов, на которые следует обратить своё внимание:

  1. Показатель реабсорбции глюкозы определяют за счет введения внутривенно пациенту сахарный раствор, эта смесь значительно повышает уровень наличия глюкозы в кровеносной системе.
  2. После этого проводят анализ мочи. Если показатель содержания находится в пределах 9,5-10 ммоль на литр, тогда он считается нормальным.
  3. Определение дистальной реабсорбции не менее важно, хотя этот процесс также обладает несколькими особенностями:
  4. На протяжении определенного временного промежутка пациенту следует отказаться от употребления любой жидкости.
  5. На анализ берется урина, проводят исследование состояния самой жидкости, а также её плазмы.
  6. Через некоторый временной промежуток, пациенту вводят вазопрессин.
  7. Затем можно пить воду.

На протяжении определенного временного промежутка пациенту следует отказаться от употребления любой жидкости

После получения данный о реакции организма можно зафиксировать наличие нефрогенного или же несахарного диабета.

При нормальной работе мочевыделительной системы из организма систематически и вовремя выводятся токсичные соединения и продукты распада пищи. Если возникают первые признаки нарушения работоспособности почек, тогда к самостоятельному лечению переходить нельзя, а нужно обратиться к опытному специалисту. Если вовремя не приступить к лечению, тогда есть высокая вероятность возникновения различных осложнений, а также перехода некоторых заболеваний в хроническую форму.

Регуляция процесса

Кровообращение почек является автономным процессом относительно. Если изменение артериального давления осуществляется от показателя 90 мм до 190 мм. рт. ст., тогда в почечных капиллярах удерживается давление на нормальном уровне. Такую стабильность можно объяснить тем, что в диаметре между выносящими и вносящими сосудами кровеносной системе существует некая разница. Регуляция является очень важным аспектов при работе данной системы, выделяют два основных способа: гуморальную и миогенную ауторегуляции.

Миогенная при увеличении артериального давления в приносящих альвеолах сокращается, в результате чего кровь меньше поступает в орган, за счет чего давление стабилизируется. Как правило, сужение провоцирует ангиотензин II, такое же принцип действия имеют лейкотриены и тромбоксаны. Веществами для расширения сосудов выступают дофамин, ацетилхолин и другие. За счет их воздействия давление нормализируется в клубочковых капиллярах, благодаря чему удается поддержать нормальное значение СКФ.

Гуморальная реализуется за счет гормонов. Основной характеристикой канальцевой реабсорбции является показатель всасывания воды. Данный процесс можно смело разделить на две стадии: обязательную, при которой все манипуляции происходят в проксимальных канальцах, зависимости от водной нагрузки нет, и зависимую, она осуществляется в собирательных трубочках и дистальных канальцах. Главным гормоном при этом процессе считается вазопрессин, он способствует задержке воды в организме. Синтезируют данное соединение гипоталамус, после чего он транспортируется в нейрогипофиз, а затем в кровеносную систему.

Канальцевая реабсорбция – это механизм, который организует процесс возвращения в кровь питательных соединений, микроэлементов и воды. Реабсорбция осуществляется на всех частях нефрона, хотя имеет место разные схемы. Нарушение данного процесса приводит к серьезным осложнениям и последствиям. Именно поэтому при наличии первых признаков проблем, следует обратиться в медицинское учреждение и пройти обследование, в противном случае есть вероятность .

Первичная моча, проходя по канальцах и уборочных трубочках, перед тем как превратиться в конечную мочу, претерпевает значительные изменения. Разница состоит не только в ее количестве (с 180 л остается 1-1,5 л), но и качества. Некоторые вещества, нужные организму, полностью исчезают из мочи или их становится гораздо меньше. Происходит процесс реабсорбции. Концентрация других веществ во много раз увеличивается: они концентрируются при реабсорбции воды. Еще другие вещества, которых вообще не было в первичной мочи,
появляются в конечной. Это происходит в результате их секреции.
Процессы реабсорбции могут быть активными или пассивными. Для осуществления активного процесса необходимо, чтобы были специфические транспортные системы и энергия. Пассивные процессы происходят, как правило, без затраты энергии по законам физики и химии.
Канальцевая реабсорбция происходит во всех отделах, но ее механизм в разных частях неодинакова. Условно можно выделить С отделы: проксимальный извитой каналец, петля нефрона и дистальный извитой каналец С уборочной трубочкой.
В проксимальных извитых канальцах полностью реабсорбируются аминокислоты, глюкоза, витамины, белки, микроэлементы. В этом же отделе реабсорбируется около 2/3 воды и неорганических солей Na +, К + Са2 +, Mg2 +, Cl-, НС07, т.е. вещества, которые нужны организму для его деятельности. Механизм реабсорбции главным образом прямо или косвенно связан с реабсорбцией Na +.
Реабсорбция натрия. Большая часть Na + реабсорбируется против градиента концентрации за счет энергии АТФ. Реабсорбция Na + осуществляется в 3 этапа: перенос иона через апикальную мембрану эпителиальных клеток канальцев, транспортировки в базальной или латеральной мембраны и перенос через указанные мембраны в межклеточную жидкость и в кровь. Основной движущей силой реабсорбции является перенос Na + с помощью Na +, К +-АТФ-азы
через базолатерального мембрану. Это обеспечивает постоянное отток ионов с кдитин. Вследствие этого Na + по градиенту концентрации с помощью специальных образований эндоплазматического ретикулума поступает к мембранам, возвращенных в межклеточной среды.
Вследствие этого постоянно действующего конвейера концентрация ионов внутри клетки и особенно вблизи апикальной мембраны становится гораздо ниже, чем с другой ее стороны, это способствует пассивному поступлению Na + в клетку по ионному градиенту. Таким образом,
2 этапа натриевой реабсорбции клетками канальцев являются пассивными и только один, конечный, требует затрат энергии. Кроме того, часть Na + реабсорбируется пассивно по межклеточных промежутках вместе с водой.
Глюкоза. Глюкоза реабсорбируется вместе с транспортом Na + В апикальной мембране клеток есть специальные транспортеры. Это белки
3 молекулярной массой 320 000, которые в начальных отделах проксимального канальца переносят друг Na + и одну молекулу глюкозы (постепенное уменьшение концентрации глюкозы в моче приводит к тому, что в следующей области канальца для переноса одной молекулы глюкозы используется уже два Na +). Движущей силой этого процесса является также электрохимический градиент Na + На противоположной стороне клетки комплекс Na - глюкоза - переносчик распадается на три элемента. Вследствие этого освобожден переносчик возвращается на свое прежнее место и снова приобретает способность переносить новые комплексы Na + и глюкозы. В клетке концентрация глюкозы увеличивается, благодаря чему образуется градиент концентрации, который направляет его в базально-латеральных мембран клетки и обеспечивает выход в межклеточную жидкость. Отсюда глюкоза поступает в кровеносные капилляры и возвращается в общий кровоток. Апикальная мембрана не пропускает глюкозу обратно в просвет канальца. Транспортные переносчики глюкозы содержатся лишь в проксимальном отделе канальцев, поэтому глюкоза реабсорбируется только здесь.
В норме при обычном уровне глюкозы в крови, а следовательно и концентрации ее в первичной мочи, реабсорбируется вся глюкоза. Однако при повышении уровня глюкозы в крови более 10 ммоль / л (около 1,8 г / л) мощность транспортных систем становится недостаточной для реабсорбции.
Первые следы нереабсорбованои глюкозы в конечной моче обнаруживаются при превышении его концентрации в крови. Чем выше концентрация глюкозы в крови, тем большее количество нереабсорбованои глюкозы.
До концентрации ее 3,5 г / л это увеличение еще не прямо пропорционально, поскольку в процесс еще не включается часть транспортеров. Но, начиная с уровня 3,5 г / л, выведение глюкозы с мочой становится лрямо пропорционален концентрации ее в крови. У мужчин полная нагрузка системы реабсорбции наблюдается при поступлении 2,08 ммоль / мин (375 мг / мин) глюкозы, а у женщин-1, 68 ммоль / мин (303 мг / мин) из расчета на 1,73 м2 поверхности тела.
При неушкодж? Них почках появление глюкозы в моче, например при сахарном диабете, является следствием превышения пороговой концентрации (10 ммоль / л) глюкозы в крови.
Аминокислоты. Реабсорбция аминокислот происходит по такому же механизму, как и реабсорбция глюкозы. Полная реабсорбция аминокислот происходит уже в начальных отделах проксимальных канальцев. Этот процесс таксйк связан с активной реабсорбцией Na + через апикальную мембрану клеток. Выявлено 4 типа транспортных систем: а) для основных б) для кислых в) для гидрофильных г) для гидрофобных аминокислот. С клетки аминокислоты пассивно по градиенту концентрации проходят через базальную мембрану в межклеточную жидкость, а оттуда - в кровь. Появление аминокислот в моче может быть следствием нарушения транспортных систем или очень высокой концентрации его в крови. В последнем случае может проявляться эффект, который по механизму напоминает глюкозурию - перегрузка транспортных систем. Иногда наблюдается конкуренция кислот одного типа за общий переносчик.
Белки. Механизм реабсорбции белков значительно отличается от механизма реабсорбции описанных соединений. Попадая в первичную 0, ечу, небольшое количество белков в норме почти полностью реабсорбируется путем пиноцитоза. В цитоплазме клеток проксимальных канальцев белки распадаются при участии лизосомальных ферментов. Аминокислоты, которые образуются, по градиенту концентрации из клетки поступают в межклеточную жидкость, а оттуда - в кровеносные капилляры. Таким путем может реабсорбуватися до 30 мг белка за 1 мин. При повреждении клубочков в фильтрат попадает больше белков и часть может поступать в мочу (протеинурия).
Реабсорбция воды. Процессы реабсорбции воды происходит во всех отделах нефрона. Но механизмы реабсорбции в различных отделах разные. В проксимальных извитых канальцах реабсорбируется около% воды. Около 15% первичной мочи реабсорбируется в петле нефрона и 15%-в дистальных извитых канальцах и собирательных трубочках. В конечной мочи, как правило, остается только 1% воды первичного фильтрата. Причем в первых двух отделах количество реабсорбованои воды мало зависит от водной нагрузки организма и почти не регулируется. В дистальных отделах реабсорбция регулируется в зависимости от потребности организма: вода, которая попала сюда, может задерживаться в организме или выводиться с мочой.
В основе реабсорбции воды в проксимальных канальцах лежат процессы осмоса. Вода реабсорбируется вслед за ионами. Основным ионом, обеспечивающим пассивное всасывание воды, является Na +. Реабсорбция других веществ (углеводов, аминокислот и др.)., Которая осуществляется в этих отделах нефрона, также способствует всасыванию воды.
Реабсорбция воды и электролитов в петле нефрона (поворотно-протипоточний механизм). Вследствие указанных изменений в петлю нефрона поступает моча, которая является изотоническим по окружающей межклеточной жидкости. Механизм реабсорбции воды и Na + и Сl-в данном участке нефрона существенно отличается от такового в других отделах. Здесь вода реабсорбируется согласно механизму поворотно-протипоточнои системы. В ее основе лежат особенности расположения восходящих и нисходящих частей в непосредственной близости друг от друга. Параллельно с этим вглубь мозгового вещества идут уборочные трубочки и кровеносные капилляры.
Поворотно-протипоточний механизм определяется следующими функциональными характеристиками почек: а) глубже в мозговое вещество опускается петля нефрона, тем выше становится осмотическое давление окружающей межклеточной жидкости (с 300 мосм / л в корковом веществе почки в 1200-1450 мосм / л на верхушке сосочка) б) восходящий отдел не достаточно проницаем для воды в) эпителий восходящего отдела активно, с помощью транспортных систем, скачивает Na + и Си-г
Активное выкачивание NaCl эпителия восходящего отдела обусловливает повышение осмотического давления межклеточной жидкости. Благодаря этому вода диффундирует сюда нисходящего отдела петли нефрона. В начальный отдел нисходящей части поступает фильтрат, который имеет низкий осмотическое давление по сравнению с окружающей веществом. Моча по мере спуска по нисходящему отдела, отдавая воду, имеет постоянный осмотический градиент между фильтратом и межклеточной жидкостью. Поэтому вода оставляет фильтрат в области нисходящего колена, чем обеспечивается здесь реабсорбция около 15% объема первичной мочи. Кроме того, в формировании осмолярности фильтрата петли нефрона определенное значение принадлежит моче, которая может сюда попасть при повышении его концентрации в паренхиме почки.
В связи с выходом воды осмотическое давление мочи постепенно растет и достигает своего максимума в области поворота петли нефрона. Гиперосмотические моча поднимается по восходящему отдела, где, как указывалось выше, теряет Na + и С1-, которые выводятся благодаря активному функционированию транспортных систем. Поэтому в дистальные извитые канальцы фильтрат поступает даже гипоосмотическими (около 100-200 мосм / л). Таким образом, в нисходящем колене происходит процесс концентрирования мочи, а в восходящем - ее разведения.
Особенности функционирования отдельных нефронов во многом зависят от длины петли нефрона и выраженности нисходящего и восходящего отделов. Чем дольше петля (юкстамедулярни нефроны), то более выраженные процессы концентрации мочи.
В дистальные извитые канальцы и собирательные трубочки чаще поступает около 15% объема первичного фильтрата. Но в конечной моче, как правило, остается лишь 1% первичного фильтрата. В первых двух отделах количество реабсорбованои воды мало зависит от водной нагрузки организма и почти не регулируется (облигатная реабсорбция). В дистальных отделах реабсорбция регулируется с учетом потребностей организма: вода, поступившая сюда, может задерживаться в организме или выводиться с мочой (факультативная реабсорбция). Регулюетеся она гормонами, образование которых зависит от водного и ионного состояния организма.

6132 0

В просвет нефрона при КФ ежеминутно поступает более 100 мг глюкозы, но она полностью всасывается клетками проксимального канальца, поэтому обычно в моче глюкоза не обнаруживается, а ее суточная экскреция не превышает 130 мг. Реабсорбция глюкозы в кровь происходит против высокого концентрационного градиента, так как в канальцевой жидкости в конечном счете глюкозы не остается.

Процесс транспорта глюкозы относится к категории вторично-активного . Это обусловлено тем, что перенос глюкозы из просвета канальца через мембрану щеточной каемки происходит с помощью переносчика, требующего обязательного присутствия иона натрия. В мембране щеточной каемки не происходит активного транспорта ни глюкозы, ни натрия, необходимого для реабсорбции глюкозы. Клеточная энергия для этого процесса создается при работе натриевого насоса, удаляющего натрий из клетки и локализованного в плазматических мембранах боковых и базальной частей клетки, т. е. обращенных в сторону межклеточной жидкости и кровеносных капилляров.

В результате активного транспорта натрия из клетки в ее цитоплазме концентрация натрия снижается. Это служит предпосылкой для пассивного, по градиенту, входа натрия в клетку через мембрану щеточной каемки. Переносчик может транспортировать глюкозу из канальцевой жидкости в клетку только тогда, когда соединяется одновременно с глюкозой и натрием, что позволяет ему пересечь мембрану, а с внутренней стороны клетки освобождаются в цитоплазму глюкоза и натрий.

Таким образом, источником энергии служит натриевый насос базолатеральных мембран. Именно на транспорт натрия расходуется энергия ТФ, которая используется для одновременного сопряженного переноса глюкозы в клетку. Тем самым первично-активный перенос натрия обеспечивает вторично-активный сопряженный транспорт глюкозы в клетку. Эта система реабсорбции глюкозы локализована только в мембране щеточной каемки, т. е. в той части плазматической мембраны клетки, которая обращена в просвет канальца. В базальной и латеральных плазматических мембранах такого механизма переноса глюкозы нет. Поступившая в клетку глюкоза накапливается в транспортном фонде, где ее концентрация становится выше, чем во внеклеточной жидкости. Мембрана клетки в базальной части имеет низкую проницаемость для глюкозы; чтобы обеспечить реабсорбцию сахара, его перенос из клетки обусловливают специальные переносчики, транспортирующие глюкозу во внеклеточную жидкость по градиенту концентрации и без затраты энергии клеточного дыхания.

В клинике способность почки к реабсорбции глюкозы служит одним из важных показателей функционального состояния клеток проксимального канальца и количества эффективно работающих канальцев. Особенности реабсорбции глюкозы тесно связаны с механизмами глюкозурии. Из изложенных выше данных о сущности процесса реабсорбции глюкозы следует, что максимальное количество молекул глюкозы, реабсорбируемых из канальцевой жидкости в кровь, зависит от числа переносчиков глюкозы и скорости их оборота в мембране. Очевидно, что вся профильтровавшаяся глюкоза реабсорбируется до тех пор, пока количество переносчиков и скорость их движения в мембране обеспечивают перенос всех поступивших в просвет канальца молекул глюкозы.

Экскреция глюкозы с мочой начинается лишь тогда, когда ее концентрация в плазме возрастает столь значительно, что количество профильтровавшейся глюкозы превышает реабсорбционную способность канальцев (рис. 1). Количество глюкозы, реабсорбируемой при максимальной загрузке всех участвующих в ее транспорте мембранных переносчиков, служит при стандартных условиях исследования важным функциональным показателем деятельности проксимального канальца. Максимальный транспорт глюкозы (TmG) у мужчин paвен 375±79,7, а у женщин — 303±55,3 мг/мин при расчете на 1, 73 м² поверхности тела .

Рис. 1. Соотношение между концентрацией глюкозы в плазме крови, ее фильтрацией, реабсорбцией и экскрецией [Ваlint Р., 1969]. По оси ординат слева - количество фильтруемой, реабсорбируемой и экстрагируемой глюкозы, справа - очищение глюкозы; по оси абсцисс - концентрация глюкозы в плазме крови.

Исследования с введением глюкозы в кровь и измерением TmG в клинике дают представление о балансе между КФ и реабсорбцией в проксимальном канальце каждого из нефронов. При вливании гипертонического раствора глюкозы в кровь гипергликемия не вызывает глюкозурии, пока в каком-либо из канальцев не будет достигнут предел его способности реабсорбировать глюкозу. Если во всех нефронах имеется соответствие между объемом фильтруемой жидкости (а тем самым и глюкозы) и способностью к ее реабсорбции, то ТmG будет достигнут одновременно во всех нефронах и при дальнейшем повышении концентрации глюкозы в крови возникает глюкозурия.

Если же в двух нефронах фильтрация одинаковая, но состояние канальцев и способность к реабсорбции глюкозы разные, то TmG будет достигнут неодновременно. Чем больше различия между отдельными нефронами, чем более гетерогенны популяции нефронов, чем меньше соответствия между уровнем КФ глюкозы и ее реабсорбцией, тем значительнее расхождение между нефронами во времени наступления ТmG при постепенном увеличении концентрации глюкозы в плазме. В отдельных нефронах TmG достигается при концентрации глюкозы в плазме 11,1 ммоль/л, в других - 22,2 ммоль/л. Это явление названо расщеплением кривой титрования нефронов глюкозой; оно зависит от морфологической и функциональной гетерогенности популяций нефронов в почке.

ТmG увеличивается при акромегалии, после введения тироксина, а его снижение характерно для болезни Аддисона, сывороточной сенсибилизации, увеличения концентрации в фильтрате 1-лизина и 1-аланина . В процессе заболевания может изменяться соотношение между объемом КФ и канальцевой реабсорбции глюкозы. У больных сахарным диабетом в динамике заболевания может снижаться глюкозурия, несмотря на постоянно высокий уровень глюкозы и плазме, что обусловлено отложениями белково-мукополисахаридных комплексов в клубочковых капиллярах с образованием иптеркапиллярного гломерулосклероза у пожилых людей с длительным течением диабета. Это вызывает уменьшение КФ в отдельных нефронах, снижает загрузку канальцев глюкозой и они успевают реабсорбировать профильтровавшуюся глюкозу, что и приводит к снижению глюкозурии.

Клиническая нефрология

под ред. Е.М. Тареева

8314 0

Белок

В процессе клубочковой фильтрации образуется практически безбелковая жидкость, однако через фильтрующую мембрану в нефрон проникает все же небольшое количество различных белков. Они всасываются клетками проксимальных канальцев; экскреция белка в норме не превышает 20—75 мг/сут, хотя при некоторых патологических состояниях протеинурия может достигать 50 г/сут. Реабсорбция белка происходит с помощью процесса, называемого пиноцитозом.

Увеличение экскреции белка почкой может быть обусловлено возрастанием фильтрации белка в клубочках, превышающей способность канальцев к его реабсорбции, и нарушением обратного всасывания белков. Существуют раздельные системы реабсорбции различных белков, так как обнаружен Тm для гемоглобина, альбумина. Протеинурия в клинике может выявляться не только при патологических, но и при ряде физиологических состояний - большой физической нагрузке (маршевая альбуминурия), переходе в вертикальное положение (ортостатическая альбуминурия), повышении венозного давления и др.

Натрий и хлор

Ионы натрия и хлора преобладают во внеклеточной жидкости; они определяют осмотическую концентрацию плазмы крови, от их выведения или удержания почкой зависит регуляции объема внеклеточной жидкости. Так как состав ультрафильтрата весьма близок к внеклеточной жидкости, в первичной моче в наибольшем количестве содержатся ионы натрия и хлора, реабсорбция которых в молярном выражении превышает обратное всасывание всех остальных профильтровавшихся веществ, вместе взятых.

Реабсорбция натрия и хлора в дистальном сегменте нефрона и собирательных трубках обеспечивает участие в осмотическом гомеостазе. Не менее важно и то, что система транспорта натрия связана с трансмембранным переносом большой группы органических и неорганических веществ. В последние годы существенно изменились представления о механизмах, транспорта ионов клетками нефрона [Лебедев А. А., 1972; Наточин Ю. В., 1972; Vogel Н., Ullrich К., 1978]. Если раньше считали активным только транспорт натрия, то в настоящее время убедительно продемонстрирована способность клеток одного из отделов нефрона к активному транспорту ионов хлора; . Сильно изменились представления о механизме реабсорбции жидкости в проксимальном канальце. Ниже обобщены современные данные о реабсорбции натрия и хлора в почечных канальцах и регуляции этого процесса.

В проксимальном сегменте нефрона, включающем извитой и прямой канальцы, реабсорбируется около 2/3 профильтровавшегося натрия и воды, но концентрация натрия в канальцевой жидкости остается такой же, как в плазме крови. Особенность проксимальной реабсорбции заключается в том, что натрий и другие реабсорбируемые вещества всасываются с осмотически эквивалентным объемом воды и содержимое канальца всегда остается изоосмотичным плазме крови. Это обусловлено высокой проницаемостью для воды стенки проксимального канальца.

Клетки этого канальца активно реабсорбируют натрий. В начальных отделах канальца главным анионом, сопровождающим натрий, является бикарбонат; стенка этой части нефрона для хлоридов менее проницаема, что приводит к постепенному увеличению концентрации хлоридов, которая возрастает в 1,4 раза по сравнению с плазмой крови. В начальных частях проксимального канальца интенсивно реабсорбируются глюкоза, аминокислоты и некоторые другие органические компоненты ультрафильтрата. Таким образом, к конечным частям проксимального извитого канальца состав из осмотической жидкости существенно изменяется - из нее всасываются основная масса бикарбоната, многие органические вещества, но становится выше концентрация хлоридов (рис. 1).

Оказалось, что межклеточные контакты в этой части канальца высокопроницаемы для хлоридов. Так как их концентрация в просвете выше, чем в околоканальцевой жидкости и крови, они пассивно реабсорбируются из канальца, увлекая за собой натрий и воду. В прямом отделе проксимального канальца продолжается реабсорбция натрия и хлоридов. В этом отделе происходят как активный транспорт натрия, так и пассивная реабсорбция хлоридов и движение части натрия вместе с ними по межклеточным промежуткам, хорошо проницаемым для хлоридов.

Рис. 1. Локализация реабсорбции и секреции электролитов и неэлектролитов в нефроне. Стрелка, обращенная из просвета канальца, - реабсорбция вещества, в просвет канальца - секреция.

Проницаемость стенки канальцев для ионов и воды определяется свойствами не только мембран клеток, но и зоны плотного соединения, где клетки контактируют друг с другом. Оба этих элемента существенно отличаются в разных отделах нефрона. Через апикальную мембрану клетки натрий входит в цитоплазму пассивно по градиенту электрохимического потенциала, так как внутренняя поверхность клетки электроотрицательна по отношению к канальцевой жидкости.

Далее натрий движется по цитоплазме к базальной и боковым частям клетки, где находятся натриевые насосы. В этих клетках интегральной частью натриевого насоса служит активируемая ионами Na+ и К+ зависимая от Mg2+ аденозинтрифосфатаза (Na+, К+-АТФ-аза) . Этот фермент, используя энергию АТФ, обеспечивает перенос из клетки ионов натрия и поступление в нее ионов калия. Ингибиторами этого фермента служат сердечные гликозиды (например, уабаин, строфантин К и др.) полностью прекращающие активную реабсорбцию натрия клетками проксимального канальца.

Важнейшее значение в функциональной способности проксимального канальца имеет высокопроницаемая для некоторых ионов и воды зона клеточных контактов. Через нее происходят пассивная реабсорбция хлоридов и движение воды по осмотическому градиенту. Полагают, что скорость всасывания жидкости по межклеточным промежуткам регулируется под влиянием таких физических сил, как соотношение между уровнем гидростатического давления в почечных артериях, венах и мочеточнике, величина онкотического давления в околоканальцевых капиллярах и др. Проницаемость межклеточных промежутков не строго постоянна - она может меняться при ряде физиологических состояний. Даже небольшое увеличение осмотического градиента, вызываемое мочевиной, обратимо увеличивает межклеточную проницаемость в почечных канальцах.

В тонком нисходящем отделе петли Генле не происходит сколько-нибудь существенной реабсорбции натрия и хлора. Особенностью этого канальца по сравнению с тонким и толстым восходящим отделом петли Генле является высокая проницаемость для воды. Тонкий нисходящий отдел петли характер разуется низкой проницаемостью для натрия, а восходящий наоборот - высокой. Пройдя по тонкому отделу петли Генле, жидкость поступает в толстый восходящий отдел петли. Стенка этого канальца всегда имеет низкую проницаемость для воды. Особенность клеток этого канальца состоит в том, что в них функционирует хлорный насос, активно реабсорбирующий хлор из просвета канальца, натрий следует пассивно по градиенту. Неясно, происходит ли в этом канальце только пассивная реабсорбция натрия или частично функционирует и натриевый насос.

С клинической точки зрения важно, что открытие хлорного насоса совпало с выяснением механизма действия ряда наиболее эффективных современных диуретиков . Оказалось, что только при введении в просвет толстого восходящего отдела петли фуросемид и этакриновая кислота полностью угнетают реабсорбцию хлора. Они связываются с мембранными элементами клеток изнутри канальца, препятствуют поступлению хлора в клетку, а потому неэффективны при добавлении к внеклеточной жидкости (рис. 2). Эти диуретики поступают в просвет нефрона при фильтрации и секреции в проксимальном канальце, с током мочи достигают восходящего отдела петли Генле, прекращают реабсорбцию хлора и тем самым препятствуют здесь всасыванию натрия.

Рис. 2. Схема регуляции транспорта натрия и хлоридов в почке и механизма действия диуретиков [Наточин Ю. В., 1977]. Сплошной стрелкой показан активный транспорт, пунктирной - пассивный.

Толстый восходящий отдел петли Генле переходит в прямую часть дистального канальца, достигающую области macula densa, за которой следует дистальный извитой каналец. Этот отдел нефрона также малопроницаем для воды. Ведущим механизмом реабсорбции солей в этом канальце является натриевый насос, обеспечивающий реабсорбцию натрия против высокого электрохимического градиента. Особенность реабсорбции натрия в этом отделе состоит в том, что хотя здесь может всосаться лишь 10% профильтровавшегося натрия и скорость реабсорбции меньше, чем в проксимальном канальце, но создается больший концентрационный градиент, концентрация натрия и хлора в просвете может снижаться до 30-40 ммоль /л. В отличие от натрия реабсорбция хлора происходит в основном пассивно.

Связующий отдел соединяет дистальный сегмент нефрона с начальными отделами собирательных трубок. Эти канальцы раньше считавшиеся пассивными проводниками мочи в мочевыводящую систему, являются важнейшими структурами почки, тонко и точно реагирующими на действие гормонов и приспосабливающими работу почки к потребностям организма. В этих канальцах основой реабсорбции служит натриевый насос, хлориды реабсорбируются пассивно. Стенка канальцев может быть не только водонепроницаемой, но и высокопроницаемой для воды в присутствии АДГ. Именно в этом отделе канальцев (а не в дистальном сегменте, как полагали раньше) действует АДГ.

Транспорт натрия в этих клетках регулируется альдостероном. Изменение характера ионного транспорта и тем самым свойств переносчиков и насосов отражается и на особенностях химической структуры диуретиков, которые эффективны в этом отделе нефрона. В этих канальцах действуют верошпирон, амилорид, триамтерен. Верошпирон снижает реабсорбцию натрия, конкурентно уменьшая действие альдостерона. Совсем иной механизм действия у амилорида и триамтерена. Эти препараты действуют только после того, как попадут в просвет нефрона. Они связываются с теми химическими компонентами апикальной мембраны, которые обеспечивают вход натрия в клетку; натрий не может реабсорбироваться и экскретируется с мочой.

Кортикальные отделы собирательных трубок переходят в отделы, проходящие по мозговому веществу почки. Их функция отличается тем, что они способны активно реабсорбировать совсем небольшие количества натрия, но могут создавать очень высокий концентрационный градиент. Стенка этих канальцев малопроницаема для солей, а ее проницаемость для воды регулируется АДГ.

Клиническая нефрология

под ред. Е.М. Тареева


Первичная моча превращается в конечную благодаря процессам, которые происходят в почечных канальцах и собирательных бочках. В почке человека за сутки образуется 150 - 180 л фильма, или первичной мочи, а выделяется 1,0-1,5 л мочи. Остальная жидкость всасывается в канальцах и собирательных трубочках.

Канальцевая реабсорбция - это процесс обратного всасывания воды и веществ из содержащейся в просвете канальцев мочи в лимфу и кровь. Основной смысл реабсорбции состоит в том, чтобы сохранить организму все жизненно важные вещества в необходимых количествах. Обратное всасывание происходит во всех отделах нефрона. Основная масса молекул реабсорбируется в проксимальном отделе нефрона. Здесь практически полностью абсорбируются аминокислоты, глюкоза, витамины, белки, микроэлементы, значительное количество ионов Na+, C1-, HCO3- и многие другие вещества.

В петле Генле, дистальном отделе канальца и собирательных трубочках всасываются электролиты и вода. Ранее считали, что реабсорбция в проксимальной части канальца является обязательной и нерегулируемой. В настоящее время доказано, что она регулируется как нервными, так и гуморальными факторами.

Обратное всасывание различных веществ в канальцах может происходить пассивно и активно. Пассивный транспорт происходит без затраты энергии по электрохимическому, концентрационному или осмотическому градиентам. С помощью пассивного транспорта осуществляется реабсорбция воды, хлора, мочевины.

Активным транспортом называют перенос веществ против электрохимического и концентрационного градиентов. Причем различают первично-активный и вторично-активный транспорт. Первично-активный транспорт происходит с затратой энергии клетки. Примером служит перенос ионов Na+ с помощью фермента Na+, K+ - АТФазы, использующей энергию АТФ. При вторично-активном транспорте перенос вещества осуществляется за счет энергии транспорта другого вещества. Механизмом вторично-активного транспорта реабсорбируются глюкоза и аминокислоты.

Глюкоза. Она поступает из просвета канальца в клетки проксимального канальца с помощью специального переносчика, который должен обязательно присоединить ион Ма4". Перемещение этого комплекса внутрь клетки осуществляется пассивно по электрохимическому и концентрационному градиентам для ионов Na+. Низкая концентрация натрия в клетке, создающая градиент его концентрации между наружной и внутриклеточной средой, обеспечивается работой натрий-калиевого насоса базальной мембраны.

В клетке этот комплекс распадается на составные компоненты. Внутри почечного эпителия создается высокая концентрация глюкозы, поэтому в дальнейшем по градиенту концентрации глюкоза переходит в интерстициальную ткань. Этот процесс осуществляется с участием переносчика за счет облегченной диффузии. Далее глюкоза уходит в кровоток. В норме при обычной концентрации глюкозы в крови и, соответственно, в первичной моче вся глюкоза реабсорбируется. При избытке глюкозы в крови, а значит, в первичной моче может произойти максимальная загрузка канальцевых систем транспорта, т.е. всех молекул-переносчиков.

В этом случае глюкоза больше не сможет реабсорбироваться и появится в конечной моче (глюкозурия). Эта ситуация характеризуется понятием " максимальный канальцевый транспорт" (Тм). Величине максимального канальцевого транспорта соответствует старое понятие " почечный порог выведения". Для глюкозы эта величина составляет 10 ммоль/л.

Вещества, реабсорбция которых не зависит от их концентрации в плазме крови, называются непороговыми. К ним относятся вещества, которые или вообще не реабсорбируются, (инулин, маннитол) или мало реабсорбируются и выделяются с мочой пропорционально накоплению их в крови (сульфаты).

Аминокислоты. Реабсорбция аминокислот происходит также по механизму сопряженного с Na+ транспорта. Профильтровавшиеся в клубочках аминокислоты на 90% реабсорбируются клетками проксимального канальца почки. Этот процесс осуществляется с помощью вторично-активного транспорта, т.е. энергия идет на работу натриевого насоса. Выделяют не менее 4 транспортных систем для переноса различных аминокислот (нейтральных, двуосновных, дикарбоксильных и аминокислот). Эти же системы транспорта действуют и в кишечнике для всасывания аминокислот. Описаны генетические дефекты, когда определенные аминокислоты не реабсорбируются и не всасываются в кишечнике.

Белок. В норме небольшое количество белка попадает в фильтрат и реабсорбируется. Процесс реабсорбции белка осуществляется с помощью пиноцитоза. Эпителий почечного канальца активно захватывает белок. Войдя в клетку, белок подвергается гидролизу со стороны ферментов лизосом и превращается в аминокислоты. Не все белки подвергаются гидролизу, часть их переходит в кровь в неизмененном виде. Этот процесс активный и требует энергии. За сутки с конечной мочой уходит не более 20-75 мг белка. Появление белка в моче носит название протеинурии. Протеинурия может быть и в физиологических условиях, пример, после тяжелой мышечной работы. В основном протеинурия имеет место в патологии при нефритах, нефропатиях, при миеломной болезни.

Мочевина. Она играет важную роль в механизмах концентрирования мочи, свободно фильтруется в клубочках. В проксимальном канальце часть мочевины пассивно реабсорбируется за счет градиента концентрации, который возникает вследствие концентрирования мочи. Остальная часть мочевины доходит до собирательных трубочек. В собирательных трубочках под влиянием АДГ происходит реабсорбция воды и концентрация мочевины повышается. АДГ усиливает проницаемость стенки и для мочевины, и она переходит в мозговое вещество почки, создавая здесь примерно 50% осмотического давления.

Из интерстиция по концентрационному градиенту мочевина диффундирует в петлю Генле и вновь поступает в дистальные канальцы и собирательные трубочки. Таким образом совершается внутрипочечный круговорот мочевины. В случае водного диуреза всасывание воды в дистальном отделе нефрона прекращается, а мочевины выводится больше. Таким образом ее экскреция зависит от диуреза.

Слабые органические кислоты и основания. Реабсорбция слабых кислот и оснований зависит от того, в какой форме они находятся - в ионизированной или неионизированной. Слабые основания и кислоты в ионизированном состоянии не реабсорбируются и выводятся с мочой. Степень ионизации оснований увеличивается в кислой среде, поэтому они с большей скоростью экскретируются с кислой мочой, слабые кислоты, напротив, быстрее выводятся с щелочной мочой.

Это имеет большое значение, так как многие лекарственные вещества являются слабыми основаниями или слабыми кислотами. Поэтому при отравлении ацетилсалициловой кислотой или фенобарбиталом (слабыми кислотами) необходимо вводить щелочные растворы (NaHCO3), для того чтобы перевести эти кислоты в ионизированное состояние, тем самым способствуя их быстрому выведению из организма. Для быстрой экскреции слабых оснований необходимо вводить в кровь кислые продукты для закисления мочи.

Вода и электролиты. Вода реабсорбируется во всех отделах нефрона. В проксимальных извитых канальцах реабсорбируется около 2/3 всей воды. Около 15% реабсорбируется в петле Генле и 15% - в дистальных извитых канальцах и собирательных трубочках. Вода реабсорбируется пассивно за счет транспорта осмотически активных веществ: глюкозы, аминокислот, белков, ионов натрия, калия, кальция, хлора. При снижении реабсорбции осмотически активных веществ уменьшается и реабсорбция воды. Наличие глюкозы в конечной моче ведет к увеличению диуреза (полиурии).

Основным ионом, обеспечивающим пассивное всасывание воды, является натрий. Натрий, как указывалось выше, также необходим для транспорта глюкозы и аминокислот. Кроме Того, он играет важную роль в создании осмотически активной среды в интерстиции мозгового слоя почки, благодаря чему происходит концентрирование мочи. Реабсорбция натрия совершается во всех отделах нефрона. Около 65% ионов натрия реабсорбируется в проксимальных канальцах, 25% - в петле нефрона, 9% - в дистальном извитом канальце и 1% - в собирательных трубочках.

Поступление натрия из первичной мочи через апикальную мембрану внутрь клетки канальцевого эпителия происходит пассивно по электрохимическому и концентрационному градиентам. Выведение натрия из клетки через базолатеральные мембраны осуществляется активно с помощью Na+, K+ - АТФазы. Так как энергия клеточного метаболизма расходуется на перенос натрия, транспорт его является первично-активным. Транспорт натрия в клетку может происходить за счет разных механизмов. Один из них - это обмен Na+ на Н+ (противоточный транспорт, или антипорт). В этом случае ион натрия переносится внутрь клетки, а ион водорода - наружу.

Другой путь переноса натрия в клетку осуществляется с участием аминокислот, глюкозы. Это так называемый котранспорт, или симпорт. Частично реабсорбция натрия связана с секрецией калия.

Сердечные гликозиды (строфантин К, оубаин) способны угнетать фермент Na+, К+ - АТФазу, обеспечивающую перенос натрия из клетки в кровь и транспорт калия из крови в клетку.

Большое значение в механизмах реабсорбции воды и ионов натрия, а также концентрирования мочи имеет работа так называемой поворотно-противоточной множительной системы.

Поворотно-противоточная система представлена параллельно расположенными коленами петли Генле и собирательной трубочкой, по которым жидкость движется в разных направлениях (противоточно). Эпителий нисходящего отдела петли пропускает воду, а эпителий восходящего колена непроницаем для воды, но способен активно переносить ионы натрия в тканевую жидкость, а через нее обратно в кровь. В проксимальном отделе происходит всасывание натрия и воды в эквивалентных количествах и моча здесь изотонична плазме крови.

В нисходящем отделе петли нефрона реабсорбируется вода и моча становится более концентрированной (гипертонической). Отдача воды происходит пассивно за счет того, что в восходящем отделе одновременно осуществляется активная реабсорбция ионов натрия. Поступая в тканевую жидкость, ионы натрия повышают в ней осмотическое давление, тем самым способствуя притягиванию в тканевую жидкость воды из нисходящего отдела. В то же время повышение концентрации мочи в петле нефрона за счет реабсорбции воды облегчает переход натрия из мочи в тканевую жидкость. Так как в восходящем отделе петли Генле реабсорбируется натрий, моча становится гипотоничной.

Поступая далее в собирательные трубочки, представляющие собой третье колено противоточной системы, моча может сильно концентрироваться, если действует АДГ, повышающий проницаемость стенок для воды. В данном случае по мере продвижения по собирательным трубочкам в глубь мозгового вещества все больше и больше воды выходит в межтканевую жидкость, осмотическое давление которой повышено вследствие содержания в ней большого количества Na" 1" и мочевины, и моча становится все более концентрированной.

При поступлении больших количеств воды в организм почки, наоборот, выделяют большие объемы гипотонической мочи.