Open
Close

История создания антимикробных препаратов статья. Изобретатель антибиотиков или история спасения человечества. Продолжение великого дела

Микроорганизмы есть везде, можно сказать - всегда. На данный момент подсчитано, что возраст Земли насчитывает около 4,6 миллиарда лет. Океаны появились около 4,4 миллиарда лет назад. Затем на Земле появились первые бактериальные клетки. Чтобы представить себе, как это долго - только в последние 500 миллионов лет развивалась жизнь в форме, напоминающей нынешние формы.

Таким образом, микроорганизмы составляют многочисленную группу организмов, без которых не обошлось открытие антибиотиков - и дальнейшее совершенствование их форм не было бы возможно. Открытие и введение этих веществ естественного происхождения для лечения инфекционных заболеваний человека, положило начало новой эпохе - спасения жизни и здоровья миллионов людей по всему миру.

История исследований

В научных исследованиях можно найти информацию о том, что микроорганизмы окружающей среды - имеют антибиотические свойства. Уже в древности интуитивно считалось, что существуют в природе вещества, которые помогают в лечении многих заболеваний, в частности инфекций. Есть также доказательства, что люди, еще тогда, пытались использовать антибиотики природного происхождения для лечения различных заболеваний. Следы тетрациклина - для примера, были найдены в останках костей человека в районе Нуби (исторической земли расположенной в настоящее время на территории южного Египта и северного Судана), датируется началом нашей эры (350 - 550).

Другим примером применения антибиотиков в древние времена, является утверждение их присутствия при анализе гистологических образцов, взятых из тела бедренной кости скелета времен Римской Империи, в Ливийской пустыне в Египте. В исследуемых образцах было выявлено наличие тетрациклина. Тот факт, что эти вещества попали в кости, доказывает, что в рационе древних цивилизаций находились вещества богатые на антибиотики природного происхождения. Есть также упоминания, что более 2000 лет назад заплесневелый хлеб в Китае, Греции, Сербии, Египте использовался для лечения некоторых патологических состояний, в частности, при плохо заживающих и инфицированных ранах. Тогда действия природных антибиотиков воспринимались как влияние духов или богов, ответственных за болезни и страдания.

В России существовали подобные применения. Медики давали больным пациентам пиво, смешанное с оболочками черепов и кожей змеи, а вавилонские врачи вылечили больному глаза, используя смесь желчи лягушки и кислого молока. В XVII веке, промывали раны смесью на базе пшеничного хлеба с плесенью. Однако научные размышления над специфическими свойствами микроорганизмов начались лишь в конце XIX века.

В 1870 году в Англии Сэр Джон Скотт Бурдон-Сандерсон начал наблюдения над свойствами плесени. Год спустя, Джозеф Листер экспериментировал с влиянием того, что он назвал Penicillium glaucium на ткани человека. Последовательно, в 1875 году Джон Тинделл пояснил антибактериальное действие гриба Penicillium на страницах Royal Society. Во Франции в 1877 году Луи Пастер провел тезис о том, что бактерии могут убивать другие бактерии. 20 лет спустя, в 1897 году Эрнест Дюшен, на защите диссертации "Антагонизм между плесенью и микроорганизмами", констатировал факт наличия веществ, которые могут привести к подавлению размножения некоторых патогенных бактерий. Дальнейшие исследования плесени и микробов были прерваны в связи со смертью, вызванной туберкулезом ученого.

В 1899 году Рудольф Эммерих и Оскар Лев описали в статье результаты своей работы с микроорганизмами. Они доказали, что бактерии, которые являются источниками одной болезни, могут быть выходом и лечением для другой болезни. Они вели примитивное исследование, применяя зараженные бактериями (Bacillus pyocyaneus - в настоящее время Pseudomonas aeruginosa) бинты. Образцы из этих используемых штаммов бактерий были в состоянии устранить другие штаммы. Из этих экспериментов Эммерих и Лев создали препарат, основанный на штаммах бактерий B. pyocyaneus, который назвали pyocyanase. Это был первый антибиотик для применения в больницах. К сожалению, его эффективность была низкой. Кроме того, наличие большого количества акридизина (вещество токсичное для человека), повлияло на факт прекращения применения данного препарата.

Изобретатель антибиотиков

Важной вехой и, одновременно, началом настоящей эры антибиотиков был 1928 год. Тогда изобретатель антибиотиков Александр Флеминг - шотландский бактериолог, исследователь (1922) - открыл белок со свойствами антисептика, после возвращения из отпуска, случайно обратил внимание на странные аномалии, которые произошли на чашке с колониями Золотистого стафилококка, предназначенной для утилизации. Его внимание привлекла голубая плесень (Penicillium notatum) и связанное с этим интересное наблюдение, что фрагмент на питательной среде колоний бактерий, рос в пространстве, что окружает мицелий, подвергаясь дезинтеграции. Тогда он начал разведение плесени, одновременно начал проводить исследования для того, чтобы использовать плесень в борьбе с патогенами. Исследования продолжались достаточно долго. Спустя 10 лет уже в 1939 году Говард Флори, Эрнст Чейн и Норман Хитл внедрили в производство пенициллин.

Сначала пенициллин производили на нескольких чашках, но со временем они внедрили масштабную промышленность данного вещества. Да, именно антибиотик под названием пенициллин вошел в клиническую практику в 1940 году. Пенициллин начали использовать во время боевых действий в Северной Африке, в 1943 году. Доступен он был в форме кальциевой соли (CaPn) в виде порошка, который представлял собой смесь CaPn и сульфонамиды. Применяли его для засыпки ран, в виде мазей, а также в чистом виде, предназначенном для приготовления растворов для промывания полостей тела и ран, а также в виде таблеток натриевой соли (NaPn), которые после преобразования в волокнистую солевую массу предназначались для инъекций. Вначале на фронт попадали ограниченные ресурсы данного антибиотика, кроме того, детально документировалось каждое его использование. Применяли его, в частности, для лечения газовой гангрены, тяжелых ран грудной клетки с повреждением внутренних органов, ран головы и сложных, открытых ран, при повреждениях суставов. Его использовали также для лечения тяжелых форм воспаления легких, менингита и септицемии - после предварительной проверки на чувствительность бактерий которые вызвали эти инфекции, к пенициллину. В более поздний период, когда на фронт попадало больше препарата, его использовали также для лечения гонореи.

Развитие и проведение дальнейших анализов

Еще один ученый, который навсегда вошел в историю как первооткрыватель антибиотиков, полученных из микроорганизмов - Сельман Ваксман. Это он первым употребил название "антибиотик" (anti - против и biotikos - жизненный) - химическое вещество, вырабатываемое бактериями, обладает способностью убивать или задерживать рост других микроорганизмов. Ваксман, еще, будучи студентом, систематически брал пробы грунта с территории своего учебного заведения и занимался наблюдением роста различных микроорганизмов. Во время своих долго продолжающихся исследований отметил возникновение колоний микробов, количество которых зависит от типа почвы, рн, глубины добычи и назначения грунта. Эти открытия повлияли на тот факт, что этот человек на постоянной основе занялся разведением грамм-положительных бактерий. Следствием долгих исследований Ваксмана, в дальнейшем стало открытие стрептомицина, его учеником - Альбертом Шатцом.

Он отметил, что Streptomyces griseus (S. griseus) производит связь активности в отношении грамотрицательных бактерий и микобактерий туберкулеза. Стрептомицин был самым важным открытием с момента открытия пенициллина. Благодаря этому началась эффективная борьба с туберкулезом. Открытия первых антибиотиков дало толчок для проведения дальнейших анализов и изготовления многих новых веществ. В связи с этим, период между 1950 и 1970 годом стал поистине «золотой эрой» открытий новых классов антибиотиков. Из числа многочисленных препаратов, в которых предшественниками были вещества, вырабатываемые микроорганизмами, следует отметить, в частности, те, что относятся к классам b-лактамов, аминогликозидов или тетрациклинов.

Заключение

Как видно из приведенных выше кратких сведений, микроорганизмы дали начало великим открытиям, но с момента введения массового производства антибиотиков, их применение в медицине и в других областях, к сожалению, показало сопротивление организма на несколько классов антибиотиков. Однако фактом является то, что в настоящее время это глобальная проблема и огромная опасность современной медицины.

Несмотря на большой прогресс, который наблюдается в области генетики, микробиологии или молекулярной биологии, еще нет достаточных знаний о механизмах, ответственных за устойчивость к антибиотикам. Не определенно, какие факторы отвечают за устойчивость к антибиотикам и не известно, какие барьеры ограничивают передачу таких генов другим видам микроорганизмов.

С того момента, когда Александр Флеминг открыл антибиотик, прошло почти 100 лет. Этот период можно назвать временем большого развития фармацевтической промышленности, богатого на новые лекарственные препараты для лечения многих болезней, которые совсем недавно считались неизлечимыми. Не было бы всего этого без маленьких микроорганизмов, которые стали великими союзниками человечества.

Большинство доступных сегодня препаратов было обнаружено во время так называемой «золотой эры» антибиотиков. Еще недавно казалось, что с концом этого периода возможности поиска новых бактерий прошли уже все возможные способы. Ничего более далекого от истины - в настоящее время уже известно, что существуют еще большие залежи непроверенных микроорганизмов. Есть много "фабрик", где возможно есть потенциал альтернативных веществ в терапии различных заболеваний. До сих пор продолжаются активные поиски новых мест обитания микроорганизмов, а также новых методов, способов и возможностей их привлечения и разведения. Подсчитано, что к настоящему времени удалось выделить и охарактеризовать только 1% всех антимикробных соединений, которые вырабатываются в природе, и только 10%, естественно, производимых антибиотиков.

Историю создания антибактериальных препаратов нельзя назвать длительной — официально лекарство, которое мы теперь называем антибиотиком, было разработано англичанином Александром Флемингом в начале XX столетия. Но мало кто знает, что аналогичное изобретение на 70 лет раньше было сделано в России. Почему оно не стало применяться, и кто в итоге добился признания в этой сфере, рассказывает АиФ.ru.

Когда бактерии лечат

Первым, кто предположил существование бактерий, способных избавить человечество от тяжелых болезней, был французский микробиолог и химик Луи Пастер . Он выдвинул гипотезу о своего рода иерархии у живых микроорганизмов — и о том, что одни могут быть сильнее других. В течение 40 лет ученый искал варианты спасения от тех недугов, что долгие годы считались неизлечимыми, и ставил опыты на известных ему видах микробов: выращивал, очищал, подселял друг к другу. Именно так он обнаружил, что бактерии опаснейшей сибирской язвы могли погибать под воздействием других микробов. Однако дальше этого наблюдения Пастер не продвинулся. Самое обидное, что он даже не подозревал, насколько был близок к разгадке. Ведь «защитником» человека оказалась такая привычная и знакомая многим... плесень.

Именно этот грибок, вызывающий сегодня у многих сложные эстетические чувства, стал предметом дискуссии двух русских врачей в 1860-х годах. Алексей Полотебнов и Вячеслав Манассеин спорили — является ли зеленая плесень своего рода «прародителем» для всех грибковых образований или нет? Алексей выступал за первый вариант, более того, был уверен, что от нее произошли все микроорганизмы на земле. Вячеслав же утверждал, что это не так.

От жарких словесных дебатов медики перешли к эмпирическим проверкам и начали параллельно два исследования. Манассеин, наблюдая за микроорганизмами и анализируя их рост и развитие, обнаружил, что там, где разрастается плесень... других бактерий нет. Полотебнов, проводя свои независимые испытания, выявил то же самое. Единственное — он выращивал плесень в водной среде — и по окончании эксперимента обнаружил, что вода не пожелтела, осталась чистой.

Ученый признал поражение в споре и... выдвинул новую гипотезу. Он решил попробовать приготовить на основе плесени бактерицидный препарат — специальную эмульсию. Полотебнов начал применять этот раствор для лечения больных — в основном для обработки ран. Результат был ошеломляющим: пациенты шли на поправку гораздо быстрее, чем раньше.

Свое открытие, а также все научные выкладки, Полотебнов не оставил в тайне — опубликовал и представил на суд общественности. Но эти поистине революционные опыты остались незамеченными — официальная наука отреагировала вяло.

О пользе открытых форточек

Стоило бы Алексею Полотебнову быть более настойчивым, а официальным медиками немного менее инертными — и Россия была бы признана родиной изобретения антибиотиков. Но в итоге развитие новой методики лечения приостановилось на 70 лет, пока за дело не взялся британец Александр Флеминг. Ученый с самой юности хотел найти средство, которое позволяло бы уничтожать болезнетворные бактерии и спасать людям жизнь. Но главное открытие своей жизни он сделал случайно.

Флеминг занимался изучением стафилококков, при этом у биолога была одна отличительная особенность — он не любил наводить порядок на рабочем столе. Чистые и грязные банки могли вперемешку стоять неделями, при этом он забывал закрывать часть из них.

Однажды ученый оставил пробирки с остатками колоний выращенных стафилококков на несколько дней без внимания. Когда же он вернулся к стеклам, то увидел, что они все заросли плесенью — скорее всего, споры залетели через открытое окно. Флеминг не стал выбрасывать испорченные образцы, а с любопытством истинного ученого поместил их под микроскоп — и был поражен. Никакого стафилококка не было, осталась лишь плесень и капли прозрачной жидкости.

Флеминг стал экспериментировать с разными видами плесени, выращивая из обычной зеленой серую и черную и «подсаживая» ее к другим бактериям — результат был удивительным. Она словно «отгораживала» от себя вредоносных соседей и не позволяла им размножаться.

Он первым обратил внимание и на «влагу», которая возникает рядом с грибковой колонией, и предположил, что жидкость должна обладать буквально «убийственной силой». В результате долгих исследований ученый выяснил, что эта субстанция может уничтожать бактерии, более того, своих свойств она не теряет даже при разведении водой в 20 раз!

Найденное вещество он назвал пенициллином (от названия плесени Penicillium — лат.).

С этого времени разработка и синтез антибиотика стали основным делом жизни биолога. Его интересовало буквально все: на какой день роста, в какой среде, какой температуре грибок работает лучше всего. В результате испытаний выяснилось, что плесень, являясь крайне опасной для микроорганизмов, безвредна для животных. Первым человеком, на котором испытали действие вещества, стал ассистент Флеминга — Стюарт Греддок , который страдал от гайморита. В качестве эксперимента ему ввели в нос порцию вытяжки из плесени, после чего состояние больного улучшилось.

Результаты своих исследований Флеминг представил в 1929 году в Лондонском медицинско-научном клубе. Удивительно но, несмотря на страшные пандемии — только за 10 лет до этого «испанка» унесла жизни миллионов человек, — официальная медицина не сильно заинтересовалась открытием. Хотя Флеминг не обладал красноречием и, по отзывам современников, был «тихий, застенчивый человек» — он все же взялся за рекламу препарата в научном мире. Ученый регулярно, в течение нескольких лет печатал статьи и делал доклады, в которых упоминал о своих опытах. И в итоге, благодаря этой настойчивости коллеги-медики все же обратили внимание на новое средство.

Четыре поколения

Медицинская общественность наконец заметила препарат, но возникла новая проблема — при выделении пенициллин быстро разрушался. И только через 10 лет после обнародования открытия на помощь Флемингу пришли английские ученые Говард Флери и Эрнст Чейн . Именно они и придумали способ, как можно выделить пенициллин, чтобы тот сохранился.

Первые открытые испытания нового препарата на пациентах состоялись в 1942 году.

33-летняя молодая жена администратора Йельского университета Анна Миллер , мать троих детей, заразилась от 4-летнего сына стрептококковой ангиной и слегла. Болезнь быстро осложнилась лихорадкой, начал развивать менингит. Анна умирала, на момент доставки в главный госпиталь Нью-Джерси ей ставили диагноз стрептококковый сепсис, что в те годы было практически приговором. Сразу по прибытии Анне сделали первый укол пенициллина, и через несколько часов — еще серию инъекций. Уже за сутки температура стабилизировалась, через несколько недель лечения женщину выписали домой.

Ученых ждала заслуженная награда — в 1945 году Флемингу, Флори и Чейну за их работу была присуждена Нобелевская премия.

Долгое время пенициллин был единственным препаратом, который спасал жизни людей при тяжелых инфекциях. Однако периодически он вызывал аллергию, не всегда был доступен. И врачи стремились разработать более современные и недорогие аналоги.

Ученые и медики выяснили, что все антибактериальные вещества можно разделить на 2 группы: бактериостатические, когда микробы остаются живы, но не могут размножаться, и бактерицидные, когда бактерии погибают и выводятся из организма. После длительного применения ученые отметили, что микробы начинают адаптироваться и привыкать к антибиотикам, и поэтому приходится менять состав препаратов. Так появились более «сильные» и качественно очищенные препараты второго и третьего поколения.

Как и пенициллин, их применяют и в настоящее время. Но при тяжелых заболеваниях уже используются высокоэффективные антибиотики 4-го поколения, большая часть из которых синтезирована искусственно. В современные лекарства добавляют компоненты, которые помогают уменьшить риск возникновения осложнений: противогрибковые, противоаллергические и так далее.

Антибиотики помогли победить страшную «моровую язву» — чуму, наводившую ужас на все страны, черную оспу, снизили смертность от пневмонии, дифтерита, менингита, сепсиса, полиомиелита. Удивительно, а ведь все началось с научных споров и пары нечищенных пробирок.

Сложно представить сейчас, что такие заболевания как пневмония, туберкулёз и ЗППП всего 80 лет назад означали смертный приговор для пациента. Действенных лекарственных средств против инфекций не было, и люди умирали тысячами и сотнями тысяч. Ситуация становилась катастрофичной в периоды эпидемий, когда в результате вспышки тифа или холеры гибло население целого города.

Сегодня в каждой аптеке антибактериальные препараты представлены в широчайшем ассортименте, а вылечить с их помощью можно даже такие грозные болезни, как менингит и сепсис (общее заражение крови). Далёкие от медицины люди редко задумываются о том, когда изобрели первые антибиотики, и кому человечество обязано спасением огромного количества жизней. Ещё труднее представить, как лечили инфекционные болезни до этого революционного открытия.

Жизнь до антибиотиков

Ещё из курса школьной истории многие помнят, что продолжительность жизни до эпохи Новейшего времени была очень небольшой. Дожившие до тридцатилетнего возраста мужчины и женщины считались долгожителями, а процент детской смертности достигал невероятных значений.

Роды были своеобразной опасной лотереей: так называемая родильная горячка (инфицирование организма роженицы и смерть от сепсиса) считалась обычным осложнением, а лекарств от неё не было.

Ранение, полученное в сражении (а воевали люди во все времена много и практически постоянно), приводило обычно к смерти. И чаще всего не потому, что повреждались жизненно важные органы: даже травмы конечностей означали воспаление, заражение крови и смерть.

Древняя история и Средневековье

Древний Египт: заплесневевший хлеб как антисептик

Тем не менее, люди с древних времён знали о целебных свойствах некоторых продуктов в отношении инфекционных заболеваний. Например, ещё 2500 лет назад в Китае забродившая соевая мука использовалась для лечения гнойных ран, а ещё раньше индейцы майя с той же целью применяли плесень с особого вида грибов.

В Египте времён строительства пирамид заплесневевший хлеб являлся прототипом современных антибактериальных средств: повязки с ним значительно повышали шанс выздоровления в случае ранения. Использование плесневых грибов имело чисто практический характер до тех пор, пока учёные не заинтересовались теоретической стороной вопроса. Однако до изобретения антибиотиков в их современном виде было ещё далеко.

Новое время

В эту эпоху наука стремительно развивалась во всех направлениях, и медицина исключением не стала. Причины гнойных инфекций в результате ранения или оперативного вмешательства описал в 1867 году Д. Листер, хирург из Великобритании.

Именно он установил, что возбудителями воспаления являются бактерии, и предложил способ борьбы с ними при помощи карболовой кислоты. Так возникла антисептика, которая ещё долгие годы оставалась единственным более или менее успешным методом профилактики и лечения нагноений.

Краткая история открытия антибиотиков: пенициллина, стрептомицина и остальных

Врачи и исследователи отмечали низкую эффективность антисептиков в отношении возбудителей, проникших глубоко в ткани. Кроме того, действие лекарств ослаблялось биологическими жидкостями пациента и было коротким. Требовались более действенные препараты, и учёные всего мира активно работали в данном направлении.

В каком веке изобрели антибиотики?

Явление антибиоза (способности одних микроорганизмов уничтожать другие) было открыто в конце 19 столетия.

  • В 1887 году один из основоположников современной иммунологии и бактериологии – всемирно известный французский химик и микробиолог Луи Пастер – описал губительное действие почвенных бактерий на возбудителя туберкулёза.
  • Опираясь на его исследования, итальянец Бартоломео Гозио в 1896 году получил в ходе экспериментов микофеноловую кислоту, ставшую одним из первых антибактериальных средств.
  • Чуть позже (в 1899) немецкие врачи Эммерих и Лов открыли пиоценазу, подавляющую жизнедеятельность возбудителей дифтерии, тифа и холеры.
  • А ранее – в 1871 году – российские врачи Полотебнов и Манассеин обнаружили губительное действие плесневых грибов на некоторые болезнетворные бактерии и новые возможности в терапии венерических заболеваний. К сожалению, их идеи, изложенные в совместном труде «Патологическое значение плесени», не обратили на себя должного внимания и на практике широко не применялись.
  • В 1894 году И. И. Мечников обосновал практическое использование кисломолочных продуктов, содержащих ацидофильные бактерии, для лечения некоторых кишечных расстройств. Это позднее подтвердили практические исследования русского учёного Э. Гартье.

Тем не менее, эпоха антибиотиков началась в 20 веке с открытия пенициллина, положившего начало настоящей революции в медицине.

Изобретатель антибиотиков

Александр Флеминг — первооткрыватель пенициллина

Имя Александра Флеминга известно из школьных учебников биологии даже далёким от науки людям. Именно он считается первооткрывателем вещества с антибактериальным действием – пенициллина. За неоценимый вклад в науку в 1945 году британский исследователь получил Нобелевскую премию. Интерес для широкой публики представляют не только подробности сделанного Флемингом открытия, но и жизненный путь учёного, а также особенности его личности.

Родился будущий лауреат Нобелевской премии в Шотландии на ферме Лохвильд в многодетной семье Хуга Флеминга. Образование получать Александр начал в Дарвеле, где проучился до двенадцатилетнего возраста. Через два года обучения в академии Килмарнок перебрался в Лондон, где жили и работали старшие братья. Юноша трудился клерком, одновременно являясь студентом Королевского Политехнического института. Заниматься медициной Флеминг решил по примеру брата Томаса (врача-офтальмолога).

Поступив в медицинскую школу при госпитале Святой Марии, Александр в 1901 году получил стипендию этого учебного заведения. Поначалу молодой человек не отдавал выраженного предпочтения какой-либо конкретной области медицины. Его теоретические и практические работы по хирургии в годы учебы свидетельствовали о недюжинном таланте, однако Флеминг не чувствовал особого пристрастия к работе с «живым телом», благодаря чему и стал изобретателем пенициллина.

Судьбоносным для молодого врача оказалось влияние Алмрота Райта – известного профессора патологии, приехавшего в 1902 году в госпиталь.

Ранее Райт разработал и успешно применил вакцинацию от брюшного тифа, однако его интерес к бактериологии этим не ограничился. Он создал группу молодых перспективных специалистов, в которую попал и Александр Флеминг. Получив в 1906 году ученую степень, он был приглашен в команду и работал в исследовательской лаборатории больницы всю свою жизнь.

В годы Первой мировой войны молодой ученый служил в Королевской исследовательской армии в звании капитана. В период боевых действий и позднее, в созданной Райтом лаборатории, Флеминг изучал последствия ранений взрывчатыми веществами и способы профилактики и лечения гнойных инфекций. А пенициллин открыл сэр Александр уже 28 сентября 1928 года.

Необычная история открытия

Не секрет, что многие важные открытия были сделаны случайным образом. Однако для исследовательской деятельности Флеминга фактор случайности имеет особое значение. Еще в 1922 году он совершил свое первое значительное открытие в области бактериологии и иммунологии, простудившись и чихнув в чашку Петри с посевами болезнетворных бактерий. Через некоторое время ученый обнаружил, что в месте попадания его слюны колонии возбудителя погибли. Так был открыт и описан лизоцим – антибактериальное вещество, содержащееся в слюне человека.

Так выглядит чаша Петри с пророщенными грибами Penicillium notatum.

Не менее случайным образом мир узнал и о пенициллине. Здесь нужно отдать должное халатному отношению персонала к санитарно-гигиеническим требованиям. То ли чашки Петри были плохо вымыты, то ли споры плесневого гриба были занесены из соседней лаборатории, но в результате на посевы стафилококка попал Penicillium notatum. Еще одной счастливой случайностью стал длительный отъезд Флеминга. Будущего изобретателя пенициллина месяц не было в госпитале, благодаря чему плесень успела вырасти.

Вернувшись на работу, ученый обнаружил последствия неряшливости, однако не стал сразу выбрасывать испорченные образцы, а пригляделся к ним внимательнее. Обнаружив, что вокруг выросшей плесени колонии стафилококка отсутствуют, Флеминг заинтересовался этим явлением и начал изучать его детально.

Ему удалось определить вещество, вызвавшее гибель бактерий, которое он назвал пенициллином. Понимая важность своего открытия для медицины, британец посвятил более десяти лет исследованиям этого вещества. Были опубликованы работы, в которых он обосновывал уникальные свойства пенициллина, признавая, однако, что на данной стадии препарат непригоден для лечения людей.

Пенициллин, полученный Флемингом, доказал свою бактерицидную активность в отношении многих грамотрицательных микроорганизмов и безопасность для людей и животных. Тем не менее, препарат был нестабилен, терапия требовала частого введения огромных доз. Кроме того, в нем присутствовало слишком много белковых примесей, дававших негативные побочные эффекты. Эксперименты по стабилизации и очистке пенициллина велись британским ученым с тех пор, как самый первый антибиотик был открыт и вплоть до 1939-го года. Однако к положительным результатам они не привели, и Флеминг охладел к идее использования пенициллина для лечения бактериальных инфекций.

Изобретение пенициллина

Второй шанс открытый Флемингом пенициллин получил в 1940-м году.

В Оксфорде Говард Флори, Норман У. Хитли и Эрнст Чейн, объединив свои познания в химии и микробиологии, занялись получением пригодного к массовому использованию препарата.

Около двух лет потребовалось на то, чтобы выделить чистое действующее вещество и испытать его в клинических условиях. На этом этапе к исследованиям был привлечен первооткрыватель. Флемингу, Флори и Чейну удалось успешно вылечить несколько тяжелых случаев сепсиса и пневмонии, благодаря чему пенициллин занял свое законное место в фармакологии.

В последующем была доказана его эффективность в отношении таких заболеваний, как остеомиелит, родильная горячка, газовая гангрена, стафилококковая септицемия, гонорея, сифилис и многих других инвазивных инфекций.

Уже в послевоенные годы было выяснено, что пенициллином можно лечить даже эндокардит. Эта сердечная патология ранее считалась неизлечимой и приводила к летальному исходу в 100% случаев.

Многое о личности первооткрывателя говорит тот факт, что Флеминг категорически отказался патентовать свое открытие. Понимая всю значимость препарата для человечества, он считал обязательным сделать его доступным для всех. Кроме того, сэр Александр весьма скептически относился к собственной роли создания панацеи от инфекционных заболеваний, характеризуя её как «Миф Флеминга».

Таким образом, отвечая на вопрос о том, в каком году изобрели пенициллин, следует называть 1941г. Именно тогда был получен полноценный действенный препарат.

Параллельно разработка пенициллина велась США и России. Американскому исследователю Зельману Ваксману в 1943 удалось получить эффективный в отношении туберкулёза и чумы стрептомицин, а микробиолог Зинаида Ермольева в СССР в это же время получила крустозин (аналог, который почти в полтора раза превосходил зарубежные).

Производство антибиотиков

После научно и клинически подтверждённой эффективности антибиотиков встал закономерный вопрос об их массовом производстве. В то время шла Вторая мировая война, и фронту очень были нужны эффективные средства лечения раненых. В Великобритании возможность изготавливать лекарства отсутствовала, поэтому производство и дальнейшие исследования были организованы в США.

С 1943 года пенициллин стал выпускаться фармацевтическими компаниями в промышленных объёмах и спас миллионы людей, увеличив и среднюю продолжительность жизни. Значимость описанных событий для медицины в частности и истории в целом переоценить трудно, поскольку тот, кто открыл пенициллин, совершил настоящий прорыв.

Значение пенициллина в медицине и последствия его открытия

Антибактериальное вещество плесневого гриба, выделенное Александром Флемингом и усовершенствованное Флори, Чейном и Хитли, стало основой для создания множества различных антибиотиков. Как правило, каждый препарат активен в отношении определённого вида болезнетворных бактерий и бессилен против остальных. Например, пенициллин не эффективен против палочки Коха. Тем не менее, именно разработки первооткрывателя позволили Ваксману получить стрептомицин, ставший спасением от туберкулёза.

Эйфория 50-х годов прошлого века по поводу открытия и массового производства «волшебного» средства казалась вполне оправданной. Грозные заболевания, столетиями считавшиеся смертельными, отступили, и появилась возможность существенно улучшить качество жизни. Некоторые учёные столь оптимистично смотрели в будущее, что предрекали даже скорый и неминуемый конец любым инфекционным заболеваниям. Однако даже тот, кто придумал пенициллин, предупреждал о возможных неожиданных последствиях. И как показало время, инфекции никуда не исчезли, а открытие Флеминга можно оценивать двояко.

Положительный аспект

Терапия инфекционных заболеваний с приходом в медицину пенициллина изменилась радикально. На его основе были получены препараты, эффективные против всех известных возбудителей. Теперь воспаления бактериального происхождения лечатся довольно быстро и надёжно курсом инъекций или таблеток, а прогнозы на выздоровление почти всегда благоприятны. Значительно снизилась детская смертность, увеличилась продолжительность жизни, а смерть от родильной горячки пневмонии стала редчайшим исключением. Почему же инфекции как класс никуда не исчезли, а продолжают преследовать человечество не менее активно, чем 80 лет назад?

Отрицательные последствия

На момент обнаружения пенициллина было известно много разновидностей болезнетворных бактерий. Учёным удалось создать несколько групп антибиотиков, с помощью которых можно было справиться со всеми возбудителями. Однако в ходе применения антибиотикотерапии выяснилось, что микроорганизмы под действием препаратов способны мутировать, приобретая устойчивость. Причём новые штаммы образуются в каждом поколении бактерий, сохраняя резистентность на генетическом уровне. То есть люди своими руками создали огромное количество новых «врагов», которых до изобретения пенициллина не существовало, и теперь человечество вынуждено постоянно искать новые формулы антибактериальных средств.

Выводы и перспективы

Получается, что открытие Флеминга было ненужным и даже опасным? Конечно же, нет, поскольку к таким результатам привело исключительно бездумное и бесконтрольное использование полученного «оружия» против инфекций. Тот, кто изобрел пенициллин, ещё в начале 20 века вывел три основных правила безопасного применения антибактериальных средств:

  • выявление конкретного возбудителя и использование соответствующего препарата;
  • достаточная для гибели возбудителя дозировка;
  • полный и непрерывный курс лечения.


К сожалению, люди редко следуют этой схеме. Именно самолечение и небрежность стали причиной появления бесчисленных штаммов болезнетворных микроорганизмов и трудно поддающихся антибактериальной терапии инфекций. Само же открытие пенициллина Александром Флемингом – это великое благо для человечества, которому всё ещё нужно учиться использовать его рационально.

Введение ………………………….………………………………………….3

    1. История антибиотиков……………………………………………… …....4
    2. Общая характеристика антибиотиков……………………………………13

Заключение………………………………………………… …………………23

Список литературы

Введение

Антибиотики – это все лекарственные препараты, подавляющие жизнедеятельность возбудителей инфекционных заболеваний, таких как грибки, бактерии и простейшие.

Когда впервые были созданы антибиотики, их считали " волшебными пулями", которые должны были радикально изменить лечение инфекционных заболеваний. Однако сейчас эксперты с беспокойством отмечают, что золотой век антибиотиков закончился.

Антибиотики занимают особое место в современной медицине. Они являются объектом изучения различных биологических и химических дисциплин. Наука об антибиотиках развивается бурно. Если это развитие началось с микробиологии, то теперь проблему изучают не только микробиологи, но и фармакологи, биохимики, химики, радиобиологи, врачи всех специальностей.

За последние 35 лет открыто около ста антибиотиков с различным спектром действия, однако, в клинике применяется ограниченное число препаратов. Это объясняется главным образом тем, что большинство антибиотиков не удовлетворяют требованиям практической медицины.

Изучение строения антибиотиков позволило подойти к раскрытию механизма их действия, особенно благодаря огромным успехам в области молекулярной биологии.

Цель работы: изучить историю антибиотиков.

Задачи: 1) ознакомиться с историей появления антибиотиков.

2) рассмотреть общую характеристику антибиотиков.

    I) История появления антибиотиков

Идея использования микробов против микробов и наблюдения о микробном антагонизме относятся к временам Луи Пастера и И.И. Мечникова. В частности, Мечников писал, что «в процессе борьбы друг с другом микробы вырабатывают специфические вещества как орудия защиты и нападения». А чем иным, как не орудием нападения одних микробов на другие, оказались антибиотики? Современные антибиотики – пенициллин, стрептомицин и др. – получены как продукт жизнедеятельности различных – бактерий, плесеней и актиномицетов. Именно эти вещества действуют губительно, либо задерживают рост и размножение болезнетворных микробов.
Еще в конце XIX в. профессор В.А. Манассеин описал противомикробное действие зеленой плесени пенициллиум, а А.Г. Полотебнов с успехом применял зеленую плесень для лечения гнойных ран и сифилитических язв. Кстати, известно, что индейцы майя использовали зеленую плесень для лечения ран. При гнойных заболеваниях рекомендовал плесень и выдающийся арабский врач Абу Али Ибн Сина (Авиценна).
Эра антибиотиков в современном значении этого слова началась с замечательного открытия – пенициллина Александром Флемингом. В 1929 г. английский ученый Александр Флеминг опубликовал статью, принесшую ему всемирную известность: он сообщил о новом, выделенном из колоний плесени, веществе, которое он назвал пенициллином. С этого момента и начинается «биография» антибиотиков, которые по праву считаются «лекарством века». В статье указывалось на высокую чувствительность к пенициллину стафилококков, стрептококков, пневмококков. В меньшей степени к пенициллину были чувствительны возбудитель сибиреязвенной болезни и бацилла дифтерии, а совсем не восприимчивы – бацилла брюшного тифа, холерный вибрион и другие. Однако А. Флеминг не сообщил о виде плесени, из которой он выделил пенициллин. Уточнение сделал известный миколог Шарль Вестлинг.
Но этот пенициллин, открытый Флемингом, имел ряд недостатков. В жидком состоянии он быстро терял свою активность. Из– за слабой концентрации его приходилось вводить в больших количествах, что было очень болезненно. Пенициллин Флеминга содержал в себе также много побочных и далеко не безразличных белковых веществ, попавших из бульона, на котором выращивалась плесень пенициллиум. В результате всего этого использование пенициллина для лечения больных затормозилось на несколько лет. Только в 1939 г. врачи медицинской школы Оксфордского университета приступили к изучению возможности лечения пенициллином инфекционных заболеваний. Г. Флори, Б. Хаийн, Б. Чейн и другие специалисты составили план подробного клинического испытания пенициллина. Вспоминая этот период работы, профессор Флори писал: «Все мы работали над пенициллином с утра до вечера. Засыпали с мыслью о пенициллине, и единственным нашим желанием было разгадать его тайну». Эта напряженная работа принесла свои результаты. Летом 1940 года первые белые мыши, экспериментально зараженные стрептококками в лабораториях Оксфордского университета, были спасены от смерти благодаря пенициллину. Полученные результаты помогли клиницистам проверить пенициллин на людях. 12 февраля 1941 года Э. Абразам ввел новый препарат безнадежным больным, погибающим от заражения крови. К сожалению, после нескольких дней улучшения больные все же скончались. Однако трагическая развязка наступила не в результате применения пенициллина, а из–за его отсутствия в нужном количестве. С конца 30–х. гг. XX века работами Н.А. Красильникова, изучавшего распространение в природе актиномицетов, и последующими работами З.В. Ермольевой, Г.Ф. Гаузе и других ученых, исследовавших антибактериальные свойства почвенных микроорганизмов, было положено начало развитию производства антибиотиков. Отечественный препарат пенициллин был получен в 1942 году в лаборатории З.В. Ермольевой. В годы Великой Отечественной войны тысячи раненых и больных были спасены.
Победное шествие пенициллина и его признание во всем мире открыло новую эру в медицине – эру антибиотиков. Открытие пенициллина стимулировало поиски и выделение новых активных антибиотиков. Так, в 1942 году был открыт грамицидин (Г.Ф. Гаузе и др.). В конце 1944 года С. Ваксман со своим коллективом проводит экспериментальную проверку стрептомицина, который вскоре стал соперничать с пенициллином. Стрептомицин оказался высокоэффективным препаратом для лечения туберкулеза. Этим объясняется мощное развитие промышленности, выпускающий данный антибиотик. С. Ваксман впервые ввел термин «антибиотик», подразумевая под этим химическое вещество, образуемое микроорганизмами, обладающее способностью подавлять рост или даже разрушать бактерии и другие микроорганизмы. В дальнейшем это определение расширялось. В 1947 году был открыт и выдержал экзамен на эффективность еще один антибиотик пенициллинового ряда – хлоромицетин. Его успешно применяли в борьбе с брюшным тифом, пневмонией, лихорадкой Ку. В 1948–1950 гг. были введены ауромицин и терамицин, клиническое использование которых началось в 1952 году. Они оказались активны при многих инфекциях, включая бруцеллез, туляремию. В 1949 году был открыт неомицин – антибиотик с широким аспектом действия. В 1952 году был открыт эритомицин. Таким образом, ежегодно арсенал антибиотиков увеличивался. Появились стрептомицин, биомицин, альбомицин, левомицетин, синтомицин, тетрациклин, террамицин, эритромицин, колимицин, мицерин, иманин, экмолин и ряд других. Одни из них обладают направленным действием на определенные микробы или их группы, другие обладают более широким спектром антимикробного действия на различные микроорганизмы.
Выделяются сотни тысяч культур микроорганизмов, получаются десятки тысяч препаратов. Однако все они требуют тщательного изучения.
В истории создания антибиотиков много непредвиденных и даже трагических случаев. Даже открытие пенициллина сопровождалось, помимо успехов, и некоторыми разочарованиями. Так, вскоре была обнаружена пенициллиназа – вещество, способное нейтрализовать пенициллин. Это объясняло, почему многие бактерии невосприимчивы к пенициллину (колибацилла и микроб брюшного тифа, например, содержат в своей структуре пенициллиназу). Вслед за этим последовали и другие наблюдения, поколебавшие веру во всепобеждающую силу пенициллина. Было установлено, что определенные микробы приобретают со временем невосприимчивость к пенициллину. Накопленные факты подтвердили мнение о существовании двух видов невосприимчивости к антибиотикам: естественной (структурной) и приобретенной. Стало известно также, что ряд микробов обладает способностью вырабатывать такого же характера защитные вещества и против стрептомицина – фермент стрептомициназу. За этим, казалось бы, должен был последовать вывод о том, что пенициллин и стрептомицин становятся малоэффективными лечебными средствами и что их применять не следует. Как ни важны оказались выявленные факты, как ни грозны они были для антибиотиков, но ученые таких поспешных выводов не сделали. Наоборот, были сделаны два важных вывода: первый – искать пути и методы подавления этих защитных свойств микробов, а второй – еще глубже изучать это свойство самозащиты. Помимо ферментов, некоторые микробы защищаются витаминами и аминокислотами.
Большим недостатком длительного лечения пенициллином и другими антибиотиками было нарушение физиологического равновесия между микро– и макроорганизмом. Антибиотик не выбирает, не делает разницы, но подавляет или убивает любой организм, попадающий в сферу его деятельности. В результате уничтожаются, например, микробы, содействующие пищеварению, защищающие слизистые оболочки; в результате человек начинает страдать от микроскопических грибков. При использовании антибиотиков нужна большая осторожность. Необходимо соблюдать точные дозировки. После испытания каждого антибиотика его направляют в Комитет по антибиотикам, который решает вопрос о возможности применения его на практике.
Продолжают создаваться и совершенствоваться антибиотики, обладающие продленным действием в организме. Другим направлением в совершенствовании антибиотиков является создание таких форм антибиотиков, чтобы вводить их не шприцем, а принимать парентерально. Были созданы таблетки феноксиметилпенициллина, которые и предназначены для приема внутрь. Новый препарат успешно прошел экспериментальные и клинические испытания. Он обладает рядом очень ценных качеств, из которых наиболее важным является то, что он не боится соляной кислоты желудочного сока. Именно это обеспечивает успех его изготовления и применения. Растворяясь и всасываясь в кровь, он оказывает свое лечебное действие. Успех с таблетками феноксиметилпенициллина оправдал надежды ученых. Арсенал антибиотиков в таблетках пополнился рядом других, обладающих широким спектром действия на различных микробов. Большой известностью в настоящее время пользуются тетрациклин, террамицин, биомицин. Внутрь вводятся левомицетин, синтомицин и другие антибиотики. Так был получен полусинтетический препарат ампициллин, задерживающий рост не только стафилококков, но и микробов, вызывающих брюшной тиф, паратиф, дизентерию. Все это оказалось новым и большим событием в учении об антибиотиках. Обычные пенициллины на тифозно–паратифозно– дизентерийную группу не действуют. Теперь открываются новые перспективы для более широкого применения пенициллина на практике.
Большим и важным событием в науке явилось также получение новых препаратов стрептомицина – пасомицина и стрептосалюзида для лечения туберкулеза. Оказывается, этот антибиотик может потерять свою силу в отношении туберкулезных палочек, которые приобрели устойчивость к нему. Несомненным достижением явилось создание во Всесоюзном научно–исследовательском институте антибиотиков дибиомицина. Он оказался эффективным для лечения трахомы. Большую роль в этом открытии играли исследования З.В. Ермольевой. Наука движется вперед, и поиски антибиотиков против вирусных болезней остаются одной из актуальнейших задач науки. В 1957 г. английский ученый Айзеке сообщил о получении им вещества, которое он назвал интерфероном. Это вещество образуется в клетках организма в результате проникновения в них вирусов. Проведено изучение лечебных свойств интерферона. Опыты показали, что наиболее чувствительны к его действию вирусы гриппа, энцефалита, полиомиелита, оспо–вакцины. При этом он абсолютно безвреден для организма. Были созданы жидкие антибиотики в виде суспензий. Эта жидкая форма антибиотиков благодаря своим высокоактивным лечебным свойствам, а также приятному запаху и сладкому вкусу нашла широкое применение в педиатрии при лечении различных болезней. Они настолько удобны для применения, что в виде капель их дают даже новорожденным детям. В эпоху антибиотиков онкологи не могли не задуматься над возможностью использовать их при лечении рака. Не найдутся ли среди микробов продуценты противораковых антибиотиков? Эта задача гораздо более сложная и трудная, чем изыскание противомикробных антибиотиков, но она увлекает и волнует ученых. Большой интерес онкологов вызвали антибиотики, которые вырабатываются лучистыми грибами – актиномицетами. Можно назвать ряд антибиотиков, которые тщательно изучаются в эксперименте на животных, а отдельные – для лечения раковой болезни у людей. Актиномицин, актиноксантин, плюрамицин, саркомицин, ауратин – с этими антибиотиками связана важная полоса в поисках активных, но безвредных препаратов. К сожалению, многие из полученных противораковых антибиотиков этому требованию не отвечают.
Впереди – надежды на успех. Ярко и образно об этих надеждах сказала Зинаида Виссарионовна Ермольева: «Мы мечтаем победить и рак. Когда–то несбыточной казалась мечта о покорении космического пространства, но она сбылась. Сбудутся и эти мечты!» Итак, наиболее эффективными антибиотиками оказались те из них, которые являются продуктами жизнедеятельности актиномицетов, плесеней, бактерий и других микроорганизмов. Поиски новых микробов – продуцентов антибиотиков – продолжаются широким фронтом во всем мире. Еще в 1909 г. профессор Павел Николаевич Лащенков открыл замечательное свойство свежего белка куриных яиц убивать многих микробов. В процессе гибели происходило растворение (лизис) их. В 1922 г. это интересное биологическое явление глубоко изучил английский ученый Александр Флеминг и назвал вещество, растворяющее микробов, лизоцим. У нас в стране лизоцим был широко изучен З.В. Ермольевой с сотрудниками. Открытие лизоцима вызвало большой интерес у биологов, микробиологов, фармакологов и врачей–лечебников разных специальностей. Экспериментаторов интересовали природа, химический состав, особенности действия лизоцима на микробов. Особенно важным был вопрос о том, на какие болезнетворные микробы лизоцим действует и при каких инфекционных болезнях можно его применять с лечебной целью. Лизоцим в разной концентрации обнаружен в слезах, слюне, мокроте, селезенке, почках, печени, коже, слизистых оболочках кишок и других органах человека и животных. Кроме того, лизоцим обнаружен в различных овощах и фруктах (хрен, репа, редька, капуста) и даже в цветах (примула). Лизоцим обнаружен также и у различных микробов.
Лизоцим применяется для лечения при некоторых инфекционных заболеваниях глаз, носа, полости рта и др. Широкая популярность антибиотиков привела к тому, что они нередко стали чем–то вроде средства «домашнего лечения» и применяются без назначения врача. Конечно, такое применение нередко опасно и приводит к нежелательным реакциям и осложнениям. Неосторожное применение больших доз антибиотиков может вызвать более сильные реакции и осложнения. Не надо забывать, что антибиотики могут повреждать микробные клетки, в результате чего в организм поступают ядовитые продукты распада микробов, вызывающие отравление. Часто страдают при этом сердечно–сосудистая и нервная системы, нарушается нормальная деятельность почек, печени. Антибиотики обладают мощным действием на многие микробы, но, конечно, не на все. Антибиотиков универсального действия пока нет. Ученые стремятся к получению антибиотиков так называемого широкого спектра действия. Это значит, что такие антибиотики должны действовать на большое количество различных микробов, и такие антибиотики созданы. К их числу относятся стрептомицин, тетрациклин, хлорамфеникол и др. Но именно потому, что они вызывают гибель массы разнообразных микробов (но не всех), оставшиеся становятся агрессивными и могут причинить вред. В то же время за ними большое будущее. В настоящее время антибиотики стали применяться и для лечения животных и птиц. Так многие инфекционные заболевания птиц благодаря антибиотикам перестали быть бичом в птицеводстве. В животноводстве и птицеводстве антибиотики стали применяться как стимуляторы роста. В сочетании с некоторыми витаминами, прибавленными к корму цыплят, индюшат, поросят и других животных, антибиотики способствуют усилению роста и увеличению их веса. Ученые с полным основанием могут утверждать, что, помимо стимуляции роста, антибиотики окажут и профилактическое действие в отношении заболеваний птиц. Известны работы З.В. Ермольевой и ее сотрудников, отражающие тот факт, что среди птиц, телят и поросят заболеваемость и смертность, например от кишечных инфекций (поносов), резко были снижены при применении антибиотиков.
Будем надеяться, что за антибиотиками будет победа и над другими заболеваниями.

    II. Общая характеристика антибиотиков

Антибиотики (от анти... и греч. bĺоs - жизнь), вещества биологического происхождения, синтезируемые микроорганизмами и подавляющие рост бактерий и других микробов, а также вирусов и клеток. Многие антибиотики способны убивать микробов. Иногда к антибиотикам относят также антибактериальные вещества, извлекаемые из растительных и животных тканей. Каждый антибиотик характеризуется специфическим избирательным действием только на определённые виды микробов. В связи с этим различают антибиотики с широким и узким спектром действия. Первые подавляют разнообразных микробов [например, тетрациклин действует как на окрашивающихся по методу Грама (грамположительных), так и на неокрашивающихся (грамотрицательных) бактерий, а также на риккетсий]; вторые - лишь микробов какой-либо одной группы (например, эритромицин и олеандомицин подавляют лишь грамположительные бактерии). В связи с избирательным характером действия некоторые антибиотики способны подавлять жизнедеятельность болезнетворных микроорганизмов в концентрациях, не повреждающих клеток организма хозяина, и поэтому их применяют для лечения различных инфекционных заболеваний человека, животных и растений. Микроорганизмы, образующие антибиотики, являются антагонистами окружающих их микробов-конкурентов, принадлежащих к другим видам, и при помощи антибиотика подавляют их рост. Мысль об использовании явления антагонизма микробов для подавления болезнетворных бактерий принадлежит И. И. Мечникову , который предложил употреблять молочнокислые бактерии, обитающие в простокваше, для подавления вредных гнилостных бактерий, находящихся в кишечнике человека. Описано около 2000 различных антибиотиков из культур микроорганизмов, но лишь немногие из них (около 40) могут служить лечебными препаратами, остальные по тем или иным причинам не обладают химиотерапевтическим действием.

Антибиотики можно классифицировать по их происхождению (из грибов, бактерий, актиномицетов и др.), химической природе или по механизму действия.

Антибиотики из грибов. Важнейшее значение имеют антибиотики группы пенициллина , образуемые многими расами Penicillium notatum, P. chrysogenum и другими видами плесневых грибов. Пенициллин подавляет рост стафилококков в разведении 1 на 80 млн. и малотоксичен для человека и животных. Он разрушается энзимом пенициллиназой, образуемой некоторыми бактериями. Из молекулы пенициллина было получено её "ядро" (6-аминопенициллановая кислота), к которому затем химически присоединили различные радикалы. Так, были созданы новые "полусинтетические" пенициллины (метициллин, ампициллин и др.), не разрушаемые ценициллиназой и подавляющие некоторые штаммы бактерий, устойчивые к природному пенициллину. Другой антибиотик - цефалоспорин С - образуется грибом Cephalosporium. Он обладает близким к пенициллину химическим строением, но имеет несколько более широкий спектр действия и подавляет жизнедеятельность не только грамположительных, но и некоторых грамотрицательных бактерий. Из "ядра" молекулы цефалоспорина (7-аминоцефалоспорановая кислота) были получены его полусинтетические производные (например, цефалоридин), которые нашли применение в медицинской практике. Антибиотик гризеофульвин был выделен из культур Penicillium griseofulvum и других плесеней. Он подавляет рост патогенных грибков и широко используется в медицине.

Антибиотик из актиномицетов весьма разнообразны по химической природе, механизму действия и лечебным свойствам. Ещё в 1939 советские микробиологи Н. А. Красильников и А. И. Кореняко описали антибиотик мицетин, образуемый одним из актиномицетов. Первым антибиотиком из актиномицетов, получившим применение в медицине, был стрептомицин , подавляющий наряду с грамположительными бактериями и грамотрицательными палочки туляремии, чумы, дизентерии, брюшного тифа, а также туберкулёзную палочку. Молекула стрептомицина состоит из стрептидина (дигуанидиновое производное мезоинозита), соединённого глюкозидной связью со стрептобиозамином (дисахаридом, содержащим стрентозу и метилглюкозамин). Стрептомицин относится к антибиотикам группы водорастворимых органических оснований, к которой принадлежат также антибиотики аминоглюкозиды (неомицин , мономицин, канамицин и гентамицин), обладающие широким спектром действия. Часто используют в медицинской практике антибиотики группы тетрациклина , например хлортетрациклин (синонимы: ауреомицин, биомицин) и окситетрациклин (синоним: террамицин). Они обладают широким спектром действия и наряду с бактериями подавляют риккетсий (например, возбудителя сыпного тифа). Воздействуя на культуры актиномицетов, продуцентов этих антибиотиков, ионизирующей радиацией или многими химическими агентами, удалось получить мутанты , синтезирующие антибиотики с измененным строением молекулы (например, деметилхлортетрациклин). Антибиотик хлорамфеникол (синоним: левомицетин), обладающий широким спектром действия, в отличие от большинства других антибиотиков, производят в последние годы путём химического синтеза, а не биосинтеза. Другим таким исключением является противотуберкулёзный антибиотик циклосерин, который также можно получать промышленным синтезом. Остальные антибиотики производят биосинтезом. Некоторые из них (например, тетрациклин, пенициллин) могут быть получены в лаборатории химическим синтезом; однако этот путь настолько труден и нерентабелен, что не выдерживает конкуренции с биосинтезом. Значительный интерес представляют антибиотики макролиды (эритромицин, олеандомицин), подавляющие грамположительные бактерии, а также антибиотики полиены (нистатин , амфотерицин, леворин), обладающие противогрибковым действием. Антибиотик из бактерий в химическом отношении более однородны и в подавляющем большинстве случаев относятся к полипептидам . В медицине используют тиротрицин и грамицидин С из Bacillus brevis, бацитрацин из Bac. subtilis и полимиксин из Bacillus polymyxa. Низин, образуемый стрептококками, не применяют в медицине, но употребляют в пищевой промышленности в качестве антисептика, например при изготовлении консервов.

Антибиотические вещества из животных тканей. Наиболее известны среди них: лизоцим, открытый английским учёным Антибиотик Флемингом (1922); это энзим - полипептид сложного строения, который содержится в слезах, слюне, слизи носа, селезёнке, лёгких, яичном белке и др., подавляет рост сапрофитных бактерий, но слабо действует на болезнетворных микробов; интерферон - также полипептид, играющий важную роль в защите организма от вирусных инфекций; образование его в организме можно повысить с помощью специальных веществ, называемых интерфероногенами.

Антибиотики могут быть классифицированы не только по происхождению, но и разделены на ряд групп на основе химического строения их молекул. Такая классификация была предложена советскими учёными М. М. Шемякиным и А. С. Хохловым: антибиотики ациклического строения (полиены нистатин и леворин); алициклического строения; антибиотики ароматического строения; антибиотики - хиноны; антибиотики - кислородсодержащие гетероциклические соединения (гризеофульвин); антибиотики - макролиды (эритромицин, олеандомицин); антибиотики - азотсодержащие гетероциклические соединения (пенициллин); антибиотики - полипептиды или белки; антибиотики - депсипептиды.

Третья возможная классификация основана на различиях в молекулярных механизмах действия антибиотиков. Например, пенициллин и цефалоспорин избирательно подавляют образование клеточной стенки у бактерий. Ряд антибиотиков избирательно поражает на разных этапах биосинтез белка в бактериальной клетке; тетрациклины нарушают прикрепление транспортной рибонуклеиновой кислоты (РНК) к рибосомам бактерий; макролид эритромицин, как и линкомицин, выключает передвижение рибосомы по нити информационной РНК; хлорамфеникол повреждает функцию рибосомы на уровне фермента пептидилтранслоказы; стрептомицин и аминоглюкозидные антибиотики (неомицин, канамицин, мономицин и гентамицин) искажают "считывание" генетического кода на рибосомах бактерий. Другая группа антибиотиков избирательно поражает биосинтез нуклеиновых кислот в клетках также на различных этапах: актиномицин и оливомицин, вступая в связь с матрицей дезоксирибонуклеиновой кислоты (ДНК), выключают синтез информационной РНК; брунеомицин и митомицин реагируют с ДНК по типу алкилирующих соединений, а рубомицин - путём интеркаляции. Наконец, некоторые антибиотики избирательно поражают биоэнергетические процессы: грамицидин С, например, выключает окислительное фосфорилирование.

Основные группы антибиотиков

Пенициллины включает следующие лекарства: амоксициллин, ампициллин, ампициллин с сульбактамом, бензилпенициллин, клоксациллин, коамоксиклав (амоксициллин с клавулановой кислотой), флуклоксациллин, метициллин, оксациллин, феноксиметилпенициллин.

Цефалоспорины: цефаклор, цефадроксил, цефиксим, цефоперазон, цефотаксим, цефокситин, цефпиром, цефсулодин, цефтазидим, цефтизоксим, цефтриаксон, цефуроксим, цефалексин, цефалотин, цефамандол, цефазолин, цефрадин.

Пенициллины и цефалоспорины - вместе с антибиотиками монобактамом и карбапенемом - вместе известны как антибиотики бета-лактамы. Другие антибиотики бета-лактамы включают: азтреонам, имипенем (который обычно применяют в комбинации с циластатином).

Аминогликозиды: амикацин, гентамицин, канамицин, неомицин, нетилмицин, стрептомицин, тобрамицин.

Макролиды: азитромицин, кларитромицин, эритромицин, йозамицин, рокситромицин.

Линкозамиды: клиндамицин, линкомицин.

Тетрациклины: доксициклин, миноциклин, окситетрациклин, тетрациклин.

Хинолоны: налидиксовая кислота, ципрофлоксацин, эноксацин, флероксацин, норфлоксацин, офлоксацин, пефлоксацин, темафлоксацин (изъят в 1992г.).

Другие: хлорамфеникол, котримоксазол (триметоприм и сульфаметоксазол), мупироцин, тейкопланин, ванкомицин.

Существует несколько лекарственных форм антибиотиков: таблетки, сироп, растворы, свечи, капли, аэрозоли, мази и линименты. Каждая лекарственная форма имеет достоинства и недостатки.

Таблетки Недостатки

Достоинства

1. Безболезненно. Не требуется усилий (не сложно)

Сиропы Недостатки

1. Зависимость от моторики желудочно- кишечного тракта

2. Проблема точности дозировки

Достоинства

1. Удобны в применении в детской практике

Растворы Недостатки

1. Болезненно

2. Техническая сложность

Достоинства

1. Можно создать депо аппарата (под кожу)

2. 100% биодоступность (вводится внутривенно)

3. Быстрое создание максимальной концентрации в крови.

Свечи и капли Недостатки

Достоинства

Аэрозоли Недостатки

1. Не все антибиотики можно превратить в аэрозоль

Достоинства

1. Быстрое всасывание

Мази, линименты Недостатки

1. Применяются для местного лечения

Достоинства

1. Можно избежать системного воздействия на организм