Open
Close

В чем опасность дисфункции симпато-адреаналовой системы? Симпато адреналовый криз — тяжелое проявление ВСД Характеристика симпатоадреналовой системы

Щитовидная железа и симпатоадреналовая система - В понятие симпатоадреналовой системы обычно включают симпатическую нервную систему, оказывающую свои влияния на иннервируемые ею органы и ткани через выделение из нервных окончаний норадреналина, и мозговое вещество надпочечников. Надпочечники секретируют в кровь катехоламины, - главным образом адреналин (около 85%) и в меньших количествах норадреналин (около 15%), в ответ на стимуляцию через n. splanchnicus. Адреналин оказывает свои влияния на функции многих органов и тканей, поступая к ним из крови. Обе части симпатоадреналовой системы могут активироваться одновременно в условиях стресса, в частности, при действии низких температур или порознь, например, при гипогликемии, когда активность симпатической системы может понижаться, а адреналовой возрастает. Высшими центрами, контролирующими состояние симпатоадреналовой системы являются гипоталамус и ядра ствола мозга. Около одной третьей части от общего числа гипоталамических нейронов, отдающих свои отростки непосредственно к мотонейронам грудного отдела спинного мозга и к его парасимпатическим нейронам сакрального отдела, располагаются в паравентрикулярных ядрах. Нейроны дорсальной части этих ядер связаны непосредственно с преганглионарными симпатическими нейронами ствола мозга (n. tractus solitarius) и спинного мозга, другие - с рядом клеточных групп ствола мозга, имеющих отношение к ядрам n.vagus и другим нейронам парасимпатической нервной системы.

Через эти морфологические связи паравентрикулярных ядер гипоталамуса со стволом мозга и спинным мозгом может контролироваться как эффекторное так и афферентное звенья нервных путей, имеющих отношение к осуществлению ряда интегративных, в частности, терморегуляторных реакций организма. Этот контроль осуществляется при участии ТРГ, секретируемого нейросекреторными клетками паравентрикулярного ядра гипоталамуса и ТРГ, секретируемого нейронами одиночного ядра и ядра шва ствола мозга. Последние имеют не только связь с гипоталамическими, но и с преганглионарными нейронами спинного мозга.

Катехоламины инициируют их влияние, взаимодействуя как агонисты с несколькими специфическими типами адренорецепторов клеточной поверхности. Выделяют а-тип, а в нем аг и а2- подтипы адренорецепторов, а также в-тип, и в нем рг, в2-, в3- подтипы адренорецепторов. В основе развития эффектов вследствие стимуляции каждого из типов адренорецепторов лежит активация своей системы вторичных посредников во внутриклеточной передаче сигнала.

При взаимодействии симпатомиметика, например норадреналина, с а-адренорецепторами, развивается вазоконстрикция, торможение секреции инсулина, активация 5"-ДII дейодиназы бурой жировой ткани и другие эффекты.

При взаимодействии адреналина с β-адренорецепторами наблюдается стимуляция сердечной деятельности, расширение сосудов и бронхов, активация липолиза и усиление теплопродукции. Различия в действии агонистов α- и β-адренорецепторов обусловлены включениями различных путей внутриклеточной передачи сигналов и последующими реакциями клеточной системы.

Уже из приведенной краткой характеристики эффектов, вызываемых в организме симпатоадреналовой системой становится видно, что они сходны с эффектами, вызываемыми действием тиреоидных гормонов. Химическая симпатэктомия с помощью 6- гидроксидофамина и резерпина ведет к увеличению отношения Т3/Т4, активируя внутренние саморегуляторные механизмы щитовидной железы. Симпатоадреналовая система обеспечивает быструю ответную реакцию организма на изменение состояния внешней или внутренней среды, а также изменение психоэмоционального состояния. Эти реакции, как правило, являются непродолжительными и в ходе адаптации к условиям длительного неблагоприятного воздействия на организм реакции симпатоадреналовой системы дополняются действием тиреоидных гормонов. Их главные адаптивные эффекты усиления метаболизма, теплообразования, усиления сердечной деятельности проявляются не сразу, но носят продолжительный характер. Например, после одноразового введения Т4 усиление теплопродукции наблюдается спустя несколько часов, но может продолжаться в течение шести и более суток.

Не исключено, что одной из причин подобия эффектов симпатоадреналовой системы и ее медиаторов и эффектов тиреоидных гормонов является то, что катехоламины и гормоны щитовидной железы обладают некоторым структурным подобием вследствие наличия общего предшественника их синтеза - аминокислоты тирозина.

Исследования распределения в мозге трийодтиронина показало, что Т3 в наибольших концентрациях представлен в норадренергических нервных центрах и норадренергических проекционных зонах мозга. В таких нервных центрах как locus coeruleus и латеральная покрышечная система, Т3 обнаружен, главным образом, в цитоплазме нейронов, а в проекционных зонах основное количество Т3 представлено в ядрах нейронов. Вероятно, locus coeruleus, содержащая высокий уровень норадреналина, является структурой мозга, в которой норадреналин способствует активному превращению Т4 в Т3 и накоплению последнего в цитозоле нервных клеток. Из цитоплазмы нейронов посредством аксонального транспорта Т3 вместе с норадреналином поступает в норадренергические нервные окончания, выделяясь из которых они участвуют в передаче «тироергических» и норадренергических сигналов к соответствующим мембранным и ядерным местам связывания постсинаптических клеток-мишеней. После интернализации гормон- рецепторного комплекса этими клетками, Т3 и норадреналин через систему вторичных посредников могут оказывать влияние на экспрессию генов-мишеней. Таким образом, в ряде структур мозга существует не только прямая анатомическая связь между «тироергическими» и норадренергическими, но, вероятно, Т3 или его предшественник Т4 могут играть роль котрансмиттеров норадреналина в адренергических системах мозга.

Взаимодействие катехоламинов и тиреоидных гормонов осуществляется, главным образом, на уровне эффекторных механизмов. Тиреоидные гормоны стимулируют развитие симпатоадреналовой системы, увеличивают число адренорецепторов на клеточной поверхности и их сродство к агонистам. Это имеет место, например, в мышце сердца, где влияние тиреоидных гормонов на сердечную деятельность частично осуществляется через стимуляцию адренорецепторных механизмов. Это подтверждается и тем, что уровень катехоламинов в плазме крови при гипертиреоидизме не изменен, а после симпатэктомии стимулирующее влияние тиреоидных гормонов на сердце или ослабляется или полностью устраняется. Оно может устраняться также под действием β-адреноблокаторов, например, пропранолола. В свою очередь, β-адреноблокаторы ингибируют превращение в тканях Т4 в Т3 и слегка понижают уровень Т3 в плазме крови. Все это дало основание для применения в- адреноблокаторов в лечении тиреотоксикоза и так называемого "тиреоидного шторма" при гипертиреоидизме.

Синергизм во взаимодействии симпатоадреналовой системы и тиреоидных гормонов очевиден в организации адаптивных реакций на действие холода, когда необходимо усиление теплопродукции и снижение теплопотерь. Это достигается, с одной стороны, при участии катехоламинов, запускающих реакцию мобилизации энергосубстратов из депо жиров и углеводов, активирующих внутриклеточные метаболические процессы, повышающих теплообразование и суживающих сосуды поверхности тела. С другой стороны, адаптивные реакции при действии холода осуществляются и при участии тиреоидных гормонов, активирующих в течение продолжительного времени обменные процессы и увеличивающих теплопродукцию.

При голодании, когда организм поставлен в условия необходимости более экономного расходования депонированных энергосубстратов, понижается активность симпатоадреналовой системы, а Т4 в больших количествах, чем в нормальных условиях, превращается в рТ3 и в меньших количествах - в Т3.

В организации некоторых системных интегральных реакций организма, например, в ответ на действие холода, ведущее значение имеет деятельность гипоталамуса, согласующая ответные реакции нейроэндокринной, симпатического и парасимпатического отделов вегетативной нервной системы. Вероятно, именно ТРГ, синтез и секреция которого наиболее рано активируются при действии холода, и другие гормоны тиреоидной системы, выполняют в этой согласованной деятельности роль функциональных посредников между нейромедиаторами ЦНС, нейроэндокринными и вегетативными эффекторами терморегуляторного ответа на действие холода. Полагают, что эта полифункциональность ТРГ появилась только у теплокровных организмов в ответ на потребность связать в единую систему структуры гипоталамуса, выполняющие функции центров терморегуляции, и периферические эффекторы теплопродукции.

Исходя из представлений об адаптивном влиянии катехоламинов и тиреоидных гормонов в организме, легче понять характер изменений в состоянии симпатоадреналовой системы при изменении функции щитовидной железы и уровня тиреоидных гормонов. Например, при тиреотоксикозе, когда из-за постоянного повышенного уровня тиреоидных гормонов в организме усилены катаболические процессы, уровень основного обмена и теплообразования, уменьшается потребность в этих же эффектах со стороны симпатоадреналовой системы. Это является одним из объяснений снижения скорости оборота норадреналина, его экскреции с мочой у человека и понижения симпатической активности у экспериментальных животных после введения им тиреоидных гормонов. Обратные изменения - повышение скорости оборота, концентрации в плазме и экскреции норадреналина с мочой наблюдаются при гипотиреоидизме и дефиците тиреоидных гормонов у животных и человека. Увеличение при гипотиреоидизме уровня катехоламинов может быть одной из причин повышения тонуса сосудов, величины периферического сопротивления и артериального давления крови. В то же время, наличие повышенного уровня катехоламинов при гипотиреоидизме затрудняет объяснение известного факта - развитие при этом состоянии брадикардии. Кроме того, известно, что при избытке или недостатке уровня тиреоидных гормонов у человека не отмечается изменения секреции катехоламинов мозговым веществом надпочечников. Таким образом, отмечаемые при повышенной функции щитовидной железы симпатомиметические эффекты не могут быть объяснены с позиций изменения в крови уровня адреналина.

Из клинической практики хорошо известно, что ряд симпатомиметических эффектов, наблюдающихся при тиреотоксикозе, могут быть снижены или полностью устранены применением β- адреноблокаторов. При исследовании взаимодействия тиреоидных гормонов и катехоламинов на рецепторном уровне оказалось, что тиреоидные гормоны способны усиливать эффекты катехоламинов на клеточном уровне различными механизмами. Тиреоидные гормоны и, главным образом Т3, вызывают увеличение накопления цАМФ в ответ на адренергическое воздействие. При этом тиреоидные гормоны увеличивают число и аффинность в-адренорецепторов в миокарде, бурой и белой жировой ткани и уменьшают число а-адренорецепторов.

Вероятно, тиреоидные гормоны увеличивают скорость образования и накопления цАМФ после введения катехоламинов и приводят к повышению его уровня в плазме крови. Это влияние ослабляется применением пропранолола - антагониста β-адренорецепторов. Адреналин увеличивает экскрецию цАМФ с мочой. По-видимому, наиболее важным пострецепторным механизмом посредством которого тиреоидные гормоны усиливают эффекты цАМФ является уменьшение концентрации в клетке определенных субъединиц G-белка. Т3, в зависимости от вида тканей, вызывает понижение концентрации GM и Gu субъединиц. Это ведет к снижению ингибирующего влияния G: субъединицы на активность аденилатциклазы, которая в конечном итоге под влиянием Т3 возрастает. Тиреоидные гормоны могут также уменьшать скорость разрушения цАМФ посредством ингибирования активности фосфодиэстераз. Кроме того, гормоны щитовидной железы могут усиливать накопление цАМФ в ответ на действие катехоламинов за счет увеличения содержания в цитоплазме ионов Ca ++ .

Особенностью внутриклеточных пострецепторных эффектов тиреоидных гормонов является не только их способность вызывать накопление цАМФ, но и то, что они усиливают последующие внутриклеточные ответные реакции, которые развиваются в результате накопления цАМФ. Важнейшими из этих реакций являются увеличение образования одного из ключевых ферментов, ограничивающих скорость глюконеогенеза - фосфоенолпируваткарбоксикиназы (ФЕПКК) и синтез белка-разобщителя окислительного фосфорилирования (термогенина), являющегося ключевым звеном в механизме термогенеза в бурой жировой ткани. Вероятно, одни и те же гены, ответственные за синтез этих белков регулируются как цАМФ, так и тиреоидными гормонами.

Транскрипция гена ФЕПКК стимулируется цАМФ, который образуется в ответ на действие адреналина или глюкагона. Стимуляция гена осуществляется через нуклеотидную последовательность с которой взаимодействует цАМФ. При этом, тиреоидные гормоны выступают как синергисты цАМФ в стимуляции транскрипции гена ФЕПКК. Это достигается взаимодействием Т3 с нуклеотидной последовательностью этого гена, которая обладает структурным подобием с подобной же последовательностью, чувствительной к действию цАМФ.

Таким образом, тиреоидные гормоны выступают как синергисты катехоламинов в активации глюконеогенеза через два пути. Одним из них является прямая Т3-зависимая активация синтеза фермента ФЕПКК на ядерном уровне. Другим является участие этих гормонов в усилении действия самих катехоламинов за счет рецепторных, пострецепторных и генетических механизмов. Конечное звено в достижении конечного результата - увеличение содержания ФЕПКК, является общим и реализуется через определенные нуклеотидные последовательности транскрибируемого гена фермента, с которыми должны связаться цАМФ и Т3.

Как и в случае транскрипции гена, кодирующего синтез ФЕПКК, норадреналин, вызывающий повышение уровня цАМФ в клетке, и Т3 могут аддитивно стимулировать экспрессию гена, кодирующего синтез белка-разобщителя окислительного фосфорилирования. Так, если стимуляция экспрессии гена осуществляется норадреналином или Т3 раздельно, то усиление конечного эффекта будет двух или трехкратным, В случае совместного действия норадреналина и Т3 на сходные нуклеотидные последовательности гена стимулирующий эффект возрастает приблизительно в 20 раз.

Влияние катехоламинов на внетиреоидное превращение Т4 в Т3 осуществляется через изменение дейодиназной активности и имеет органную специфичность, обусловленную неодинаковым распределением в них 5"-ДI и 5"-ДII дейодиназ, а также типом адренорецепторов, с которыми взаимодействуют адренергические агонисты или антагонисты. Хотя прямое влияние экзогенного адреналина на превращение Т4 у человека является незначительным, введение в-адреноблокаторов вызывает понижение концентрации Т3 в плазме крови. Этим свойством обладают неселективные в-блокаторы, например ампренолол и, в особенности, вещества селективно блокирующие вгадренорецепторы - их антагонисты метапролол, атенолол. Блокада вгадренорецепторов ведет к снижению превращения Т4 в Т3 и одновременному увеличению превращения Т4 в реверсивный Т3. На этом основании полагают, что в-блокаторы непосредственно ингибируют активность 5"-ДI дейодиназы. Оказалось, что выраженность ингибирующих дейодиназу свойств антагонистов в- рецепторов связана не столько с их в-блокирующей активностью, сколько с их растворимостью в липидах. Ингибирующее действие в- блокаторов на дейодиназную активность проявляется в гомогенатах печени, но оно менее характерно для клеток почечных канальцев.

Катехоламины способны стимулировать активность 5"-ДII дейодиназы бурой жировой ткани, гипоталамуса и других отделов центральной нервной системы. Особое влияние на 5"-ДII дейодиназу оказывают агонисты α1-адренорецепторов и, наоборот, подавляют активность этого фермента антагонисты а1-адренорецепторов. Для проявления стимулирующего эффекта на 5"-ДII активность, действие агонистов α1-адренорецепторов должно осуществляться в условиях низких концентраций цАМФ в клетке, что имеет место при повышении тонуса симпатической нервной системы. Таким образом, катехоламины могут непосредственно через изменение активности 5"-ДII дейодиназы регулировать превращение Т4 в Т3 и определять локальный уровень Т3 в бурой жировой ткани и некоторых областях мозга.

В частности, увеличивая содержание Т3 в бурой жировой ткани и тем самым количество занятых этим гормонов ядерных рецепторов катехоламины через них стимулируют эффекторные геномные механизмы синтеза белка-разобщителя окислительного фосфорилирования, а-глицеролфосфатдегидрогеназы и других ферментов.

Конечный уровень активности 5"-ДII зависит не только от действия катехоламинов, но и от локальной концентрации Т4. Тироксин оказывает быстрый и сильный ингибирующий эффект на 5"-ДII дейодиназу, что имеет важное значение для аддитивных взаимоотношений между симпатоадреналовой системой и тиреоидными гормонами, в которых 5"- ДII дейодиназе отводится ключевая роль. Это хорошо демонстрируется на примере термогенного ответа бурой жировой ткани при различном уровне гормонов щитовидной железы. Так, при нормальной функции железы повышение тонуса симпатоадреналовой системы, например, в условиях холода, ведет к повышению активности 5"-ДII дейодиназы и образованию большего локального количества Т3 с целью достижения максимального термогенного ответа на действие норадреналина. При этом уровень Т3 в крови не достигает величин, способных вызвать тиреотоксическое действие.

При тиреотоксикозе, когда уровень тиреоидных гормонов в крови высокий и под их влиянием уже повышено теплообразование, симпатическая стимуляция 5"-ДII дейодиназы бурой жировой ткани ингибируется высокой концентрацией Т4 и тем самым ограничивает термогенный ответ.

Возможно, что и другие эффекты тиреоидных гормонов на локальном клеточном уровне могут регулироваться через влияние катехоламинов на активность дейодиназ. Не исключается также участие катехоламинов в поддержании определенной концентрации Т3 в плазме крови.

Понижение уровня тиреоидных гормонов в целом организме сказывается противоположным образом на эффектах симпатической нервной системы, чем при повышенном уровне этих гормонов. На уровне клеток и тканей ответные реакции на действие катехоламинов имеют меньшую интенсивность, но тонус центров симпатической нервной системы и ее центральное влияние на ткани усилены.

Снижение ответной реакции и чувствительности клеток и тканей к действию катехоламинов имеет различные механизмы. Часть из них обратны тем же механизмам, которые обсуждались для случая влияния больших количеств тиреоидных гормонов. Они включают: уменьшение числа и снижение аффинности β-адренорецепторов, увеличение числа α-адренорецепторов; усиление ингибирующего действия аденозина, которое по-видимому связано о увеличением числа субъединиц Ga- или Ge -белков; усиление фосфодиэстеразной активности; потерю способности цАМФ под действием Т3 оказывать аддитивное с Т3 влияние на генном уровне.

Особое место в механизмах изменения симпатических влияний занимают в3-адренорецепторы. Эти рецепторы взаимодействуют с аденилатциклазной системой через G-белки (Gg-субъединицу) и подобно α и β2-адренорецепторам их много в бурой и мало в белой жировой ткани. Содержание этих рецепторов и их мРНК возрастают в бурой жировой ткани при пониженном уровне тиреоидных гормонов, но быстро уменьшаются под влиянием Т3.

В противоположность имеющим место при гипотиреоидизме уменьшению интенсивности и чувствительности ответных реакций клеток и тканей на воздействие катехоламинов, эфферентная симпатическая активность возрастает. И, поскольку при этом выведение с мочой норадреналина не изменяется, его концентрация в плазме крови возрастает. При этом скорость образования адреналина не изменяется.

Возрастание эфферентной симпатической активности при гипотиреоидизме является по своей сути компенсаторной реакцией, которая дополняет сниженный ответ периферических тканей на действие катехоламинов. Такое компенсаторное влияние симпатической эфферентной активности имеет особое значение для увеличения сердечного выброса, уменьшенного при понижении содержаний Т3, а также для увеличения теплообразования в условиях холода при понижении калоригенного воздействия катехоламинов при сниженной концентрации тиреоидных гормонов.

Однако, увеличение симпатической эфферентной активности при гипотиреоидизме является не единственной компенсаторной реакцией. Например, если число β2-адренорецепторов при 4°С в бурой жировой ткани при нормальной функции щитовидной железы уменьшается, то при гипотиреоидизме или отсутствии щитовидной железы число этих рецепторов при 30°С возвращается к норме. Кроме того, чувствительность адренорецепторов к действию катехоламинов при этом также изменяется.

Примеры изменений реакций организма, отражающие взаимодействие между симпатоадреналовой и тиреоидной системами рассмотрены далее также в разделах, описывающих влияние тиреоидных гормонов на функции различных органов и систем организма.
читайте так-же

Симпатоадреналовая система – функциональное взаимодействие структур симпатичной нервной системы (НС) и мозгового вещества надпочечников.

Навигация по статье

Роль симпатоадреналовой системы

Является важным компонентом нейрогуморальной регуляции процессов в организме. Ее активация запускает каскад адаптационных изменений обмена веществ, которые способствуют мобилизации энергетических ресурсов организма.

Способствует приспосабливанию организма к изменчивым условиям. Частая и длительная активация симпатоадреналовой системы приводит к развитию патологических адаптаций кровеносной, эндокринной и нервной систем.

Гормоны симпатоадреналовой системы

Симпатическая НС иннервирует периферические органы и представлена специфическими структурами в ЦНС. В состав входит мозговое вещество надпочечников и скопления хромаффинных клеток за их пределами.

Объединение этих 2 структур основывается, в первую очередь, на общем происхождении. Клетки обеих структур в эмбриогенезе образуются из клеток нервного гребня.

Во вторых, обе структуры синтезируют и выделяют горомоны катехоламины. Для надпочечников характерно выделения гормонов – адреналина и норадреналина, для симпатической НС – норадреналина.

Существует связь между активностью симпатической системы и секрецией адреналина надпочечниками, но изменения происходят в разной степени.

Сильная активация симпатоадреналовой системы ведет к повышению уровня выделения адреналина, что усиливает активацию симпатики. Преганглионарные симпатические волокна в свою очередь оканчиваются непосредственно на клетках мозгового вещества надпочечников, что стимулирует секрецию адреналина.

Может быть независимая робота этих структур. Процессы синтеза, депонирования и секреции гормонов катехоламинов связаны, так что можно говорить о существовании саморегулирующегося нейрогуморального контроля.

Влияние катехоламинов сказывается на всех основных системах органов. Результаты этого, влияния проявляются в течение секунд по сравнению с минутами, часами или днями, которые характерны для результатов действия эндокринной системы и большинства других систем контроля, регулирующих происходящие в организме процессы. Кроме того, симпатоадреналовая система способна упреждающе реагировать на повышение физических нагрузок. Например, усиление симпатоадреналовой активности перед предстоящей большой физической нагрузкой снизит силу воздействия последней на внутреннюю среду организма.

Прямые эффекты катехоламинов. Сердечно-сосудистая система. Катехоламины стимулируют спазм в сосудистых руслах подкожных и висцеральных сосудов, слизистых оболочек и почек путем опосредования a-адренорецепторами. Однако спазм в системах коронарного и мозгового кровообращения будет минимальным, нормальный приток крови к этим органам сохранится. Адаптивное значение такого предпочтения, отдаваемого сердцу и головному мозгу, очевидно; требования к притоку крови, связанные с обменом веществ, в этих органах чрезвычайно высоки, и их непрерывная перфузия имеет жизненно важное значение. В сосудах скелетных мышц расположены b-адренорецепторы, чувствительные к низким уровням содержания циркулирующего в крови адреналина, и поэтому приток крови к скелетным мышцам усиливается во время активации мозгового слоя надпочечников.

Воздействия катехоламинов на сердце опосредуются черезb 1 -адренорецепторы и к ним относятся увеличение частоты сердечных сокращений, усиление сократимости миокарда и увеличение скорости проведения возбуждения. Увеличение сократимости миокарда иллюстрируется смещением влево и вверх кривой, характеризующей функцию желудочков сердца. На этой кривой отражена связь работы сердца с длиной волокон миокарда в момент диастолы желудочков; при любой начальной длине волокон катехоламины усиливают работу сердца. Катехоламины увеличивают также минутный объем сердца путем стимулирования веноконстрикции, увеличения венозного возврата и силы сокращения предсердий, тем самым вызывая увеличение диастолического объема, а следовательно, и длины волокон. Ускорение проводимости возбуждения приводит к более синхронным, а следовательно, и более эффективным сокращениям желудочков. Стимуляция работы сердца увеличивает потребление миокардом кислорода, что является важным фактором в патогенезе и лечении ишемической болезни сердца.

Метаболизм. Катехоламины усиливают обмен веществ. Природа биохимических процессов повышенного образования тепла и их локализация у человека неизвестны; у мелких млекопитающих при этом разобщено митохондриальное дыхание в бурой жировой ткани.

Мобилизация субстрата. В ряде тканей катехоламины стимулируют распад энергетических запасов с образованием субстрата для местного потребления; например, гликогенолиз в сердце обеспечивает субстрат для немедленного обмена веществ в миокарде. Катехоламины также ускоряют мобилизацию энергии в печени, жировой ткани и скелетных мышцах, высвобождая соответствующие субстраты (глюкозу, свободные жирные кислоты, лактат) в циркулирующую кровь для использования их по всему организму. Активация ферментов, участвующих в распаде энергетических запасов, происходит посредством b-адренорецепторного (бета 1) механизма (липолиз жировой ткани) и a- и b-адренорецепторных (бета 2) механизмов (печеночный гликогенолиз и глюконеогенез). В скелетных мышцах катехоламины стимулируют гликогенолиз (b-адренорецептор), тем самым увеличивая отток лактата.

Жидкости и электролиты. Катехоламины участвуют в регуляции объема и состава внеклеточной жидкости; путем прямого действия на почечные канальцы норадреналин стимулирует реабсорбцию натрия, тем самым поддерживая постоянство объема внеклеточной жидкости. Норадреналин и адреналин также усиливают поглощение калия клетками, обеспечивая защиту организма от развития гиперкалиемии. Дофамин усиливает экскрецию натрия. Влияние катехоламинов на метаболизм кальция, магния и фосфора носит сложный характер и зависит от целого ряда факторов.

Внутренние органы. Катехоламины влияют также на функции внутренних органов, воздействуя на гладкую мускулатуру и эпителий желез. Гладкая мускулатура мочевого пузыря и кишечника расслабляется, в то время как соответствующие сфинктеры сокращаются. Опорожнение желчного пузыря также происходит при участии симпатических механизмов. Опосредованное катехоламинами сокращение гладкой мускулатуры у женщин способствует овуляции и транспорту яйцеклетки по маточным трубам, а у мужчин - изгнанию спермы во время эякуляции. Ингибирующие a 2 -адренорецепторы на холинергических нейронах в кишечнике обеспечивают его расслабление. Посредствомb 2 -адренорецепторного механизма катехоламины индуцируют расширение бронхов.

Непрямые эффекты катехоламинов. Конечная физиологическая реакция, вызываемая катехоламинами, заключается в изменении секреции гормонов и распределении кровотока; оба этих процесса поддерживают и усиливают прямое действие катехоламинов.

Эндокринная система. Катехоламины оказывают влияние на секрецию ренина, инсулина, глюкагона, кальцитонина, гормона паращитовидных желез, тироксина, гастрина, эритропоэтина, прогестерона и, возможно, тестостерона. Этот процесс регулируется сложными петлями обратной связи. За исключением тироксина и гонадотропных гормонов, эти гормоны (являющиеся полипептидами) не находятся под непосредственным контролем гипофиза. Симпатоадреналовая система обеспечивает регуляцию секреции этих гормонов со стороны центральной нервной системы и гарантирует координированную гормональную реакцию в соответствии с потребностями поддержания гомеостаза организма.

Ренин. Юкстагломерулярный комплекс почек очень густо иннервирован. Симпатическая стимуляция посредством прямого b-адренорецепторного воздействия увеличивает количество высвобождающегося ренина, независимого от изменений тонуса почечных сосудов. Реакция ренина на снижение объема жидкости в результате падения центрального венозного давления также опосредуется через симпатическую часть нервной системы. Секреция ренина активирует ангиотензин-альдостероновую систему, и индуцированное ангиотензином сужение сосудов поддерживает прямое действие катехоламинов на кровеносную систему, в то время как опосредуемая альдостероном реабсорбция натрия дополняет аналогичный процесс, вызванный симпатической стимуляцией. Вещества, блокирующие b-адренорецепторы, подавляют секрецию ренина.

Инсулин и глюкагон. Панкреатические островки также обладают обильной симпатической иннервацией. Стимуляция симпатических нервов поджелудочной железы или увеличение концентрации циркулирующих в крови катехоламинов подавляет секрецию инсулина (процесс опосредуется a 2 -адренорецепторами) и увеличивает высвобождение глюкагона (опосредуется b-адренорецепторами). Сочетание этих эффектов поддерживает мобилизацию субстратов, усиливая прямое действие катехоламинов на продуцирование глюкозы и липолиз. Как правило, доминирует a-адренорецепторное подавление высвобождения инсулина, однако при некоторых условиях b-адренорецепторный механизм может усиливать секрецию этого гормона.

Симпатоадреналовая функция при некоторых физиологических и патофизиологических состояниях. Обеспечение адекватности кровообращения. Основной функцией симпатической части нервной системы является поддержание адекватного кровообращения. При вертикальном положении тела и уменьшении объема жидкости поток афферентных импульсов от венозных и артериальных барорецепторов уменьшается, снижается их ингибирующее влияние на вазомоторный центр, увеличивая тем самым симпатическую активность (см. рис. 66-2) и уменьшая эфферентный тонус блуждающего нерва. В результате этого увеличивается частота сердечных сокращений, а минутный объем сердца перераспределяется вследствие отведения кровотока от кожи, подкожных тканей, слизистых оболочек и внутренних органов. Благодаря симпатической стимуляции увеличивается реабсорция натрия почками, а также венозный возврат. При выраженной гипотензии в процесс включается мозговое вещество надпочечников и адреналин еще более усиливает действие симпатической части нервной системы. Аналогичный механизм симпатической активации наблюдается в организме после приема пищи, когда происходит секвестрация крови и внеклеточной жидкости в висцеральной системе кровообращения и соответственно в просвете кишки.

Застойная сердечная недостаточность. Благодаря деятельности симпатической части нервной системы обеспечивается поддержка кровообращения при застойной сердечной недостаточности (гл. 182). Веноконстрикция и симпатическая стимуляция сердца увеличивают минутный объем сердца, в то время как сужение периферических сосудов направляет ток крови к сердцу и головному мозгу. В результате повышения венозного давления афферентные. сигналы в этом случае менее четкие, чем при простом уменьшении объема жидкости. При тяжелой сердечной недостаточности истощение запасов норадреналина в сердце снижает эффективность симпатической поддержки кровообращения.

Травма и шок. При остром травматическом повреждении или шоке катехоламины надпочечников принимают участие в поддержании кровотока и мобилизации субстрата. Есть основания полагать, что симпатическая часть нервной системы при этом также активизируется. Во время длительно текущей посттравматической репаративной фазы катехоламины способствуют мобилизации субстратов и интенсифицируют обмен веществ.

Физические нагрузки. Активация симпатической части нервной системы в результате физических нагрузок приводит к увеличению минутного объема сердца, поддерживает кровоток и обеспечивает продуцирование достаточного количества субстратов для удовлетворения повышенных потребностей организма. Факторы, зависимые от центральной нервной системы, такие как антиципация, и факторы, связанные с системой кровообращения, например падение венозного давления, вызывают ответную реакцию со стороны симпатической части нервной системы. Небольшая физическая нагрузка стимулирует только симпатическую часть нервной системы, а более тяжелые нагрузки активизируют также и мозговое вещество надпочечников. Закаливание способствует снижению активности симпатической части нервной системы как в состоянии покоя, так и при нагрузке.

Гипогликемия. Секреция адреналина в мозговом веществе надпочечников заметно увеличивается при гипогликемии. Как только концентрация глюкозы в плазме крови уменьшается настолько, что становится ниже уровня, устанавливающегося после ночного голодания, регуляторные нейроны в центральной нервной системе, чувствительные к глюкозе, немедленно инициируют увеличение секреции адреналина мозговым веществом надпочечников. Этот процесс просекает особенно интенсивно в том случае, если уровень содержания глюкозы в плазме крови снизится до 50 мг/дл и менее, а уровень содержания адреналина возрастает в 25-50 раз по сравнению со средним. Тем самым увеличивается объем продуцирования глюкозы в печени, обеспечивается альтернативный субстрат в виде свободных жирных кислот, подавляется высвобождение эндогенного инсулина и угнетается опосредуемая инсулином утилизация глюкозы в мышцах. Многие клинические проявления гипогликемии, такие как тахикардия, сердцебиение, нервозность, дрожание и расширение диапазона значений пульсового артериального давления, являются вторичными по отношению к повышенной секреции адреналина.

Воздействие холода. Симпатическая часть нервной системы играет главную роль в поддержании нормальной температуры тела при воздействии холода. При снижении температуры рецепторы в коже и центральной нервной системе активируют центры гипоталамуса и ствола мозга, усиливающие симпатическую активность. Симпатическая стимуляция вызывает вазоконстрикцию в поверхностном сосудистом ложе, уменьшая тем самым потери тепла. Одновременно увеличению образования тепла способствуют дрожь при ознобе, генерирование тепла в процессе обмена веществ и мобилизация субстратов. Акклиматизация к длительному воздействию холода повышает способность генерировать тепло в процессе обмена веществ в ответ на симпатическую стимуляцию.

Потребление пищи. Умеренное потребление нежирной пищи подавляет, а переедание стимулирует деятельность симпатической части нервной системы. В результате снижения симпатической активности во время соблюдения поста или при голодании снижается интенсивность обменных процессов в организме, что может привести к развитию брадикардии и гипотензии. Повышенная симпатическая активность в периоды избыточного потребления высококалорийной пищи может способствовать увеличению скорости обмена веществ, связанному с длительным избыточным питанием.

Гипоксия. Длительное состояние гипоксии связано со стимуляцией симпатоадреналовой системы, и некоторые изменения в сердечно-сосудистой системе, наблюдаемые при гипоксии, могут быть следствием действия катехоламинов.

Симпатоадреналовая система (САС) - сложная многокомпо­нентная система, регулирующая превращение нервных импульсов в гуморальные и участвующая в метаболических процессах в орга­низме. Исполнительными органами этой системы являются нерв­ные окончания, мозговой слой надпочечников, энтерохромаффинная ткань. Регуляция этих механизмов происходит в основном в гипоталамусе, мезэнцефальной области, находящихся, в свою очередь, под контролем вышележащих отделов ЦНС и периферических нерв­ных образований. Причем катехоламины (КТ) составляют основное звено САС и активно участвуют в процессах, обеспечивающих со­зревание женского организма.

Выделены и синтезированы классические синтетические нейротрансмиттеры: биологические амины - катехоламины - дофамин (ДА), норадреналин (НА), индолы, серотонин и новый класс морфиноподобных опиоидных нейропептидов.

Катехоламины - высокоэффективные физиологические вещества, выполняющие роль нейромедиаторов центральной и симпатической нервной системы, они отличаются многогранным участием в физиологических и патологических процессах организма. Катехоламины, обра­зующиеся в мозговой ткани, составляют небольшую фракцию общего пула в организме. Концентрация КТ в крови меньше, чем в моче.

Люди часто попадают в стрессовые ситуации. И когда это происходит, в организме развивается несколько ответных реакций, приводящих его в состояние боевой готовности. Прежде всего - это выработка стрессовых гормонов (кортикостероидов). Они дают вспышку энергии, которая необходима для борьбы за жизнь любым способом - убегаете ли вы от опасности или вступаете в схватку с хищником. Этот механизм был безусловно полезен в древние времена, когда такое усиление активности спасало жизнь человеку и в ходе этого стрессовые гормоны расходовались по назначению.
Однако сегодня лишь немногим из нас приходится встречаться с такого рода опасностью. Наши дни заполнены столкновениями с суровыми начальниками, сложными клиентами, грубыми кассирами и удручающей необходимостью экономить. Для мозга всё это равнозначно стрессу и он также запускает механизм боевой готовности. И проблема здесь заключается в том, что в большинстве случаев из наших стрессовых ситуаций невозможно выйти таким способом, как например, подраться с начальником или убежать от него. А раз мы этого не делаем, то стрессовые гормоны остаются в организме и с течением времени могут привести к серьёзным нарушениям. Они приносят вред буквально каждой системе организма от сердца до мозга, провоцируя тем самым возникновение той или иной проблемы, причину которой нам и в голову не приходит связать со стрессом, например:
-Продолжительное воздействие стрессовых гормонов ослабляет кости и способствует возникновению переломов и трещин, потому что они блокируют рост на концах костей особых клеток, необходимых для формирования новой костной ткани.
-Длительное выделение кортикостероидов в кровь повышает содержание в ней сахара, что является фактором риска возникновения диабета.
-Стресс повышает кровяное давление, потому что в состоянии стресса организм начинает запасать соли и воду, чтобы увеличить производство крови на случай ранения.
-Длительное воздействие кортикостероидов может также подавлять и иммунную систему.
-Особенно подвержено воздействию стресса сердце. Стресс токсически действует на сердечные клетки, вызывая некроз сердечной мышцы.
Стрессовые гормоны способствуют выбросу в кровь больших доз адреналина. В результате этого происходит ускорение обмена веществ, что вызывает повышенную потребность в витаминах группы В,С,Н,Са и Мg. А т.к. мы с пищей недополучаем их нужное количество, то очень быстро развивается их дефицит, приводящий на первых этапах к функциональным нарушениям (обратимым), а затем к органическим (необратимым) поражениям нервных клеток.
Первым симптомом функциональных нарушений являются нервозность и раздражительность, плаксивость, нарушение сна. Если дефицит витаминов и микроэлементов не восстановить, то далее наступает снижение настроения, переходящего в депрессию.

Лимбическая система

Ренин-ангиотензиновая система

Парасимпатическая нервная система

Экстрапирамидная система

Укажите место выхода из центральной части нервной системы симпатических нервов:

Грудной отдел спинного мозга, I и II поясничные сегменты

Верхняя часть шейных сегментов спинного мозга, I и II поясничные сегменты

Грудной отдел спинного мозга, сакральная часть спинного мозга

I поясничный сегмент, верхняя часть шейных сегментов спинного мозга

II поясничный сегмент, нижняя часть шейных сегментов спинного мозга

В состав каких черепно-мозговых нервов входят парасимпатические волокна:

III, VIII, X, XI

Если в условиях высокой освещенности наблюдается стойкое расширение зрачка, то это следствие:

Чрезмерной активности симпатической части нервной системы

нормального состояния механизмов регуляции

избыточной активности парасимпатическо части нервной системы

паралича мышцы, что расширяет зрачок

паралича цилиарной мышцы

Какие явления наблюдаются пpи pаздpажении сpедних ядеp гипоталамуса:

Расшиpение зpачков

Изменения обмена веществ

Усиление пеpистальтики тонкого кишечника

Сужение глазной щели

Учащение ЧСС

Расширение зрачка зависит от....... тонуса.......нервной системы. Вставьте пропущенные слова.

Повышения, симпатической

Повышения, парасимпатической

Понижения, симпатической

Понижения, парасимпатической

Нет правильного ответа

Никотин - это..............синапсов вегетативной нервной системы. Вставьте пропущенные слова.

Блокатор ганглионарных

Блокатор нервно-органных

Активатор ганглионарных

Блокатор нервно-органных

Нет правильного ответа

По сравнению с соматическими, вегетативные нервные волокна обладают.......... возбудимостью, их рефрактерность........., а лабильность............. . Вставьте пропущенные слова.

Большей, меньше, больше

Меньшей, больше, больше

Меньшей, больше, меньше

Большей, меньше, меньшее

Меньше, меньше, меньшее

Постганглионарные нейроны симпатической нервной системы, иннервирующие протовые железы, выделяют........, который взаимодействует с............ . Вставьте пропущенные слова.

Ацетилхолин, Н-холинорецепторами

Ацетилхолин, М-холинорецепторами

Норадреналин, альфа-адренорецепторами

Норадреналин, бета-адренорецепторами

Нет правильного ответа


Симпатические нервы........... силу сокращений сердца, действуя на.............-адренорецепторы. Вставьте пропущенные слова.

Уменьшают, альфа-

Уменьшают, бета-

Усиливают, -альфа-

Усиливают, бета-

Усиливают, альфа-и бета-

Укажите, где располагаются центры метасимпатической нервной системы:

Средний мозг

Продолговатый мозг

Спинной мозг

Внутриорганные ганглии ганглии

Паравертебральные ганглии

В состоянии стресса, после травмы, у человека наблюдается расширение зрачков. Какой медиатор оказывает влияние на мышцы радужной оболочки глаза:

Серотонин

Ацетилхолин

Норадреналин

В древней Индии, подозреваемым в преступлении предлагали проглотить горсть сухого риса. Преступники не могли проглотить рис из-за уменьшенного слюноотделения в результате

Активации симпатоадреналовой системы

Активации парасимпатического ядра лицевого нерва

Уменьшения кровоснабжения слюнных желез

Активации парасимпатического ядра языкоглоточного нерва

Торможения симпато-адреналовой системы

У студента перед экзаменом зарегистрировано повышение артериального давления. С возбуждением каких структур связан данный эффект:

М-холинорецепторов

Бета-адренорецепторов

Серотониновых рецепторов

Н 2-гистаминорецепторов

Альфа-адренорецепторов

Какое вещество блокирует и какое стимулирует действие парасимпатического нерва:

Блокирует ацетилхолин, стимулирует адреналин

Блокирует атропин, стимулирует ацетилхолин

Блокирует атропин, стимулирует ГАМК

Блокирует адреналин, стимулирует атропин

Блокирует ГАМК, стимулирует ацетилхолин

У больного возник спазм гладкой мускулатуры бронхов. Физиологически обоснованным будет использование для снятия приступа активаторов:

бетта-адренорецепторов

альфа-адренорецепторов

Н- и М-холинорецепторов

Н-холинорецепторов

М-холинорецептор

Укажите ошибочный ответ. Чем тоньше постганглионаpное волокно вегетативной неpвной системы, тем:

Больше pеобаза

Больше хpонаксия

Пpодолжительнее pефpактеpность

Меньше лабильность

Быстpее скоpость пpоведения импульсов

Рефлекторная дуга вегетативных рефлексов замыкается через:

Центры спинного мозга

Центры ствола мозга

Вегетативные ганглии

Лимбическую систему

Кору больших полушарий

Укажите ошибочный ответ. Вегетативные реакции спинного мозга:

Расширение зрачка

Мочеиспускание

Потоотделение

Глотание

Дефекация

Возбуждение передних ядер гипоталамуса вызывает:

Расширение зрачков, брадикардию, гипергликемию

Расширенние зрачков, тахикардию, гипергликемию

Сужение зрачков, тахикардию, гипогликемию

Сужение зрачков, брадикардию, гипогликемию

Сужение зрачков, брадикардию, гипергликемию

Укажите орган, который иннервируется только преганглионарными волокнами симпатической нервной системы?

Мозговое вещество надпочечников

Сосуды туловища и конечностей

Слюнные железы

Симпатические нервы.......... секрецию густой слюны, действуя на............-адренорецепторы. Вставьте пропущенные слова.

Усиливают, альфа-

Усиливают, бета-

Тормозят, альфа-

Тормозят, бета-

Не изменяют, альфа-

Вставьте пропущенные слова. Симпатические нервы вызывают.......... бронхиальных мышц, действуя на........... -адренорецепторы.

Расслабление, бета-

Сокращение, бета-

Расслабление, альфа-

Сокращение, альфа-

Не иннервируют

При испуге расширяются зрачки. Какой механизм этого явления:

Повышение тонуса симпатической нервной системы

Активация затылочных зон коры мозга

Повышение тонуса парасимпатической нервной системы

Возбуждение таламуса

Угнетение подкорковых зрительных центров

У мужчины 45 лет после ваготомии возникла атония желудка. Нарушение активации, каких рецепторов, наиболее вероятно, привело к этому состоянию:

Н-холинорецепторов

&alpha - адренорецепторов

М-холинорецепторов

&beta - адренорецепторов

Глутаматных рецепторов

При исследовании глазного дна у человека в глаз закапывают атропин для расширения зрачков. Под влиянием каких нервов происходит расширение зрачков?

Глазодвигательных

Парасимпатических

Симпатических

Соматических афферентных

Соматических эфферентных

Во время резекции желудка у больного наблюдалось снижение частоты сердечных сокращений. Какой отдел ВНС, наиболее вероятно, принимает участие в формировании рефлекторного ответа?

Ядра гипоталамуса

Ядра блуждающего нерва

Миндалевидное тело

Спинной мозг

У пациента выявлена тахикардия как результат повышения тонуса центров симпатической нервной системы. Через активацию, каких рецепторов осуществляется данное влияние на сердце?

М – холинорецепторов

&alpha - 1 – адренорецепторов

&alpha - 2 – адренорецепторов

&beta – адренорецепторов

Н – холинорецепторов

Эндокринология 1.

Укажите место выделения адреналина, поступающего в русло крови:

синапсы симпатического ганглия

корковое вещество надпочечника

постганглионарный аксон симпатического нейрона

постганглионарный аксон парасимпатического нейрона

мозговое вещество надпочечников .

Гормонообразующие клетки не обнаружены в:

железах внутренней секреции

головном мозгу

пищеварительном тракте

Скелетных мышцах.

Образование и концентpация каких гоpмонов в кpови не pегулиpуется с участием гипофиза?

инсулина

паpатгоpмона

тиpоксина

Гастроинтестинальных

Укажитеошибочный ответ.Какие явления pазвиваются пpи микседеме (недостаточности образования тиреоидных гормонов)?

снижение основного обмена

медлительность мышления

недоразвитие ЦНС