Open
Close

Как называется создание лекарств в лаборатории. Драг-дизайн. Современный подход к созданию лекарств. Вкалывают роботы, а не человек

Трудно найти человека, который в какой-то период жизни не принимал бы лекарство. И в то же время вряд ли многие задумываются над тем, что в лекарстве, как в фокусе линзы, сосредоточиваются достижения фундаментальных наук – органической и неорганической химии, физиологии, биохимии, биофизики, несомненно, фармакологии и комплекса фармацевтических наук. Достижения этих фундаментальных дисциплин благодаря науке о лекарственных веществах входят в практику и служат на благо человека. Поэтому введение в фармакологию, которому и посвящена статья, не только имеет познавательное значение, но и помогает более целенаправленно изучать биологические и химические дисциплины в школе.

Путь лекарства от лаборатории до больного

Создание лекарства начинается обычно в лаборатории химика –специалиста по органическому синтезу или в лаборатории фитохимика. Первый создает пока еще не исследованные соединения, второй выделяет из растений либо индивидуальные химические соединения, либо группу близких по структуре веществ. Затем созданные или выделенные вещества передаются фармакологу, определяющему, обладают ли эти вещества нужным эффектом. Предположим, что фармаколог ищет вещества, обладающие гипотензивным эффектом, т.е. понижающие артериальное давление. Он может идти двумя путями . Первый путь носит название скрининг . При этом фармакологу часто неизвестно даже предположительно, какой химической структурой должно обладать гипотензивное средство, и он испытывает в опытах на животных одно вещество за другим, отсеивая неэффективные (скрининг-сито). Это весьма трудоемкий метод и часто малоэффективный, однако иногда единственно возможный, особенно когда речь идет о разработке новых, неизвестных, групп лекарственных веществ. Скрининг используется для поиска противоопухолевых средств. Впервые он был применен в начале столетия П.Эрлихом для получения противосифилитических средств на основе органических соединений мышьяка.

Чаще используется метод направленного синтеза . Исследователь постепенно накапливает материал, показывающий, какие химические радикалы или иные структуры ответственны за тот или иной вид действия. Одна из основных проблем фармакологии – изучение закономерностей «структура–действие». Все больше накапливается данных, на основании которых составляются программы для компьютеров. Уже с большей долей вероятности можно предсказать характер действия планируемого к синтезу и последующему изучению соединения. Всегда решающим остается эксперимент, но знание общих закономерностей «структура–действие» сокращает путь к успеху.

Итак, предположим, что найдено эффективное средство, способное вызывать гипотензивный эффект, но на этом работа фармаколога не заканчивается. Он должен выяснить, не обладает ли химическое соединение токсическими свойствами, способными проявиться при применении его в качестве лекарственного средства. Фармаколог определяет обычно острую токсичность, т.е. дозу, способную вызвать смерть 50% экспериментальных животных (ЛД 50 – летальная доза); чем меньше эта доза, тем токсичнее вещество. Лекарством может стать только то вещество, терапевтическая (лечебная) доза которого значительно (часто в 20 и более раз) меньше ЛД 50 . Диапазон доз от минимальной эффективной до минимальной токсической свидетельствует о широте терапевтического действия лекарств.

Фармаколог определяет и возможность побочных эффектов при длительном введении лекарства в терапевтических дозах. Проводится определение субхронической токсичности: препарат вводят длительное время – часто до 6 месяцев и более. При этом определяют функции всех систем организма, биохимические показатели крови, проводят патогистологическое исследование органов подопытных животных после окончания введения препарата. Это исследование позволяет судить, не нарушает ли лекарственный препарат функции органов и тканей организма при длительном введении, т.е. безопасна ли длительная терапия этим соединением. Фармаколог определяет и другие возможные токсические эффекты препарата: его влияние на репродуктивную функцию (способность производить потомство), эмбриотоксическое действие (возможность влиять на эмбрион), тератогенное действие (способность вызывать уродства плода), мутагенный эффект. При помощи специальных проб изучают влияние препарата на иммунитет, возможность канцерогенного действия препарата, его аллергенную активность и др.

Одновременно работают и специалисты-провизоры, определяющие наиболее рациональную лекарственную форму. На этом заканчивается этап доклинического исследования препарата. В каждой стране есть официальное учреждение, разрешающее клиническое исследование препарата и последующее использование его в качестве лекарственного средства. В России разрешение на клиническое исследование препарата дает Фармакологический комитет Министерства здравоохранения РФ.

Перед клиницистом, получившим на апробацию лекарственный препарат, стоят те же задачи, что и перед фармакологом, т.е. оценка лечебного эффекта препарата и выяснение возможности побочного действия при его применении. Однако у клинициста возникают трудности, с которыми не сталкивается фармаколог-экспериментатор: сознание человека, принимающего лекарство, может изменить оценку действия лекарства. При некоторых заболеваниях возможно улучшение состояния больного под влиянием внушения и авторитета врача, а также больничного режима, диеты, оказывающих положительное влияние. Поэтому необходимо различать истинный эффект лекарства от влияния сопутствующих лечению факторов. Для этого применяют пробу плацебо (пустышка). Предположим, что одной группе больных, разумеется, не требующих экстренного эффективного лечения, назначают таблетки, содержащие лекарство, а другой группе – аналогичные по виду таблетки, но не содержащие лекарства, – плацебо. Если при этом в результате лечения состояние здоровья улучшится примерно у 60% больных первой группы, а во второй группе – у 30% больных, то налицо значительное превышение действия препарата над плацебо. Следовательно, препарат эффективен. Если же эффект препарата равен плацебо, то следует признать неэффективность препарата. Разработкой препарата занимается сравнительно молодая дисциплина – клиническая фармакология . Если в результате клинических испытаний показано, что препарат эффективен, то врач еще должен оценить возможность побочного действия – нежелательного действия лекарственных веществ. Если, например, врач применяет лекарственное средство для снижения артериального давления и одновременно наблюдает у больного расстройство кишечника при лечении гипотензивным средством, то это и есть пример побочного действия. Степень и выраженность побочного действия бывают такими, что заставляют отказаться от испытания препарата, и тогда дальнейшая разработка препарата прекращается. Однако мало выраженное побочное действие, не несущее непосредственной угрозы здоровью больного, не служит причиной отказа от препарата. Известно, что мочегонные средства, такие как фуросемид, дихлотиазид, снижают концентрацию калия в крови, т.е. вызывают гипокалиемию. Однако такое нарушение коррегируется назначением диеты, богатой этими ионами, либо назначением препаратов калия или других так называемых калийсберегающих диуретиков. Коррекция позволяет успешно лечить больных с сердечно-сосудистыми заболеваниями диуретиками, не беспокоясь о развитии гипокалиемии.

Если клинические испытания прошли успешно, препарат получает разрешение на промышленное производство и применение и поступает в аптечную сеть. Отзывы о нем публикуются в печати, продолжается изучение механизма его действия, и, наконец, препарат занимает должное место в арсенале лекарственных средств. Сложен и долог путь нового лекарства от первого этапа исследования до больного. Чаще всего проходит несколько лет, прежде чем препарат разрешают применять в практике. Из многих тысяч исследованных соединений только некоторые внедряются в практику и получают название лекарственный препарат , хотя, конечно, есть и другие примеры.

Проблемы фармакокинетики

Фармакокинетика – раздел фармакологии, изучающий поведение лекарственных препаратов в организме: их всасывание, распределение, выведение и биотрансформацию . Чтобы лекарственный препарат оказал действие, он должен быть введен в организм. Все пути введения разделяются на две группы: энтеральные и парэнтеральные (от греч. энтерон желудочно-кишечный тракт). К энтеральным путям введения относится введение через рот (в том числе под язык), в 12-перстную и прямую кишку. К парэнтеральным путям введения, минующим желудочно-кишечный тракт, относится подкожное, внутримышечное, внутривенное введение лекарственных препаратов. Путь введения во многом определяет скорость поступления и выраженность эффекта лекарства.

После введения в организм лекарственное вещество разносится кровью по органам, тканям и жидким средам, но это не значит, что концентрация введенного препарата в каждом органе или ткани одинакова. Равномерному распределению лекарства мешают тканевые барьеры, через которые лекарственные вещества проникают далеко не одинаково. Одним из таких барьеров является гематоэнцефалический: проникновение веществ в центральную нервную систему из крови ограничено, так как ионизированные или нерастворимые в липидах вещества не проникают в мозг через этот барьер. Например, вещества, содержащие четвертичный атом азота, плохо проникают через этот барьер, к таким веществам может быть отнесено биологически активное соединение ацетилхолин. Биологическое значение такого барьера очевидно: проникновение некоторых веществ в мозг из крови существенно нарушило бы его функцию. Поэтому не только биологически активные, но и многие лекарственные вещества (миорелаксанты, ганглиоблокаторы) не проникают через гематоэнцефалический барьер.

Значительно более проницаемым барьером является стенка капилляров, через которую в ткани проникают большинство лекарственных веществ, но не проходят вещества с высоким молекулярным весом, например белок альбумин, имеющий молекулярную массу около 70 000. Эта особенность используется в практике: например, группа веществ высокого молекулярного веса (полиглюкины) применяется в качества кровезаменителей, так как циркулирует в кровяном русле, не проникая в ткани. Плацентарный барьер, отделяющий организм матери от плода, также легко проницаем для лекарств. Поэтому лекарства, вводимые в организм матери, могут оказывать действие и на плод, что необходимо учитывать при проведении терапии беременным женщинам.

Лекарственные вещества, особенно хорошо растворимые в воде, выводятся из организма почками. Летучие вещества выделяются легкими, частично соединения могут выводиться с каловыми массами, а также потовыми железами. Выделение лекарств – одна из причин того, что концентрация препарата в крови падает и эффективность его действия уменьшается.

Кроме того, лекарства подвергаются процессам биотрансформации. Большинство лекарственных веществ растворимы в липидах и представляют собой слабые органические кислоты или основания, которые сравнительно плохо выводятся из организма. Например, после фильтрации в почечных клубочках они реабсорбируются путем диффузии через мембраны и межклеточные соединения клеток канальцев почек. Для быстрого выведения лекарственные вещества должны быть трансформированы в более полярные формы. Поэтому, если в процессе биотрансформации в организме образуются более полярные метаболиты, ионизированные при физиологическом значении pH, менее связанные с белками плазмы, тканевыми белками, они менее способны проникать через мембраны почечного канальца. Поэтому они не подвергаются реабсорбции в почечных канальцах и выделяются с мочой. Этому и служат процессы биотрансформации в организме, которые способствуют выведению лекарства и делают его менее активным.

Химические реакции, участвующие в биотрансформации, разделяются на реакции синтеза (конъюгации) и несинтетические реакции. К первым относятся реакции присоединения к лекарственным веществам продуктов обмена. Известны реакции ацетилирования, т.е. присоединения остатков уксусной кислоты, глюкуроновой и серной кислоты. В реакциях синтеза участвуют и сульфгидрильные группы, связывающие многие органические и неорганические соединения, в частности тяжелые металлы. К неспецифическим реакциям относятся реакции окисления, восстановления и гидролиза.

Ферментные системы, участвующие в биотрансформации, локализованы в печени и эндоплазматическом ретикулуме печеночных клеток. Выделенные в эксперименте, они получили название микросомальные ферменты , поскольку связаны с фракцией микросом, выделяющихся при дифференциальном центрифугировании фрагментов печеночных клеток. Микросомальные ферменты катализируют реакции конъюгации и реакции окисления, в то время как реакции восстановления и гидролиза часто катализируются немикросомальными ферментами.

Активность микросомальных ферментов различна у разных людей и генетически детерминирована, т.е. зависит от генетических особенностей организма. Считают, что величина биотрансформации у отдельных людей может различаться в 6 раз и более, что и определяет индивидуальную чувствительность к препарату. Так, у одних больных необходимый эффект можно достичь дозами, в несколько раз большими, чем у других, и наоборот. Некоторые лекарственные препараты усиливают активность микросомальных ферментов, их называют индукторами , другие – ингибиторы – подавляют их.

Примером значения активности микросомальных ферментов в терапии может служить препарат противотуберкулезного ряда – изониазид. У некоторых больных высока активность микросомальных ферментов, их называют быстрыми инактиваторами изониазида , у других больных эта активность низка, их называют медленными инактиваторами . После шестидневного введения препарата у больных с низкой активностью концентрация изониазида в крови в 2,5 раза выше, чем у первых. У медленных инактиваторов приходится снижать дозу, чтобы не получить нежелательных побочных действий препарата .

Разумеется, «биотрансформируют» лекарства не только печень, но и другие ткани. В результате биотрансформации лекарственные вещества превращаются в метаболиты, которые, как правило, менее активны, чем основное вещество, лучше растворимы и сравнительно легко выводятся из организма почками. Таким образом организм освобождается от введенного лекарства.

Фармакокинетика предусматривает определение скорости инактивации и выделения, оба процесса определяются термином квота элиминации . Она определяет процент вещества от введенной дозы, который метаболизируется и выводится в течение суток. Если этот процент мал, то лекарство при последующих приемах может накапливаться в организме и увеличивать свой эффект. Врач может умело использовать этот феномен, выбирая дозу препарата, которая насыщает организм, затем переходя на меньшую дозу, которая восполняет потерю препарата и носит название поддерживающая доза . Некоторые вещества, например гликозиды наперстянки, применяются именно таким образом.

Продолжение следует

Статья дает базовое представление о том, как в современном мире создаются лекарства. Рассмотрены история драг-дизайна, основные понятия, термины и технологии, применяющиеся в этой сфере. Особое внимание уделено роли вычислительной техники в этом наукоемком процессе. Описаны методы поиска и валидации биологических мишеней для лекарственных препаратов, высокопроизводительный скрининг, процессы клинических и доклинических испытаний лекарств а также применение компьютерных алгоритмов.

Драг-дизайн: история

Индустрия направленного конструирования новых лекарственных препаратов, или, как этот процесс называют, калькируя с английского за неимением такого же короткого и удобного русского термина, драг-дизайн (drug - лекарственный препарат, design - проектирование, конструирование) - сравнительно молодая дисциплина, но все же не настолько молодая, как это принято считать .

Рисунок 1. Пауль Эрлих, впервые выдвинувший гипотезу о существовании хеморецепторов и их возможного использования в медицине.

Национальная библиотека медицины США

К концу девятнадцатого века химия достигла значительной степени зрелости. Была открыта таблица Менделеева, разработана теория химической валентности, теория кислот и оснований, теория ароматических соединений. Этот несомненный прогресс дал толчок и медицине. Новые химические продукты - синтетические краски, производные смол, начали использоваться в медицине для дифференциального окрашивания биологических тканей. В 1872–1874 годах в Страсбурге, в лаборатории известного анатома Вильгельма Валдеера, студент-медик Пауль Эрлих (рис. 1), изучавший селективную окраску тканей, впервые выдвинул гипотезу о существовании хеморецепторов - специальных тканевых структур, специфически взаимодействующих с химическими веществами, и постулировал возможность использования этого феномена в терапии различных заболеваний. Позже, в 1905 году, эта концепция была расширена Дж. Лэнгли, предложившим модель рецептора как генератора внутриклеточных биологических импульсов, который активируется агонистами и инактивируется антагонистами.

Этот момент можно считать рождением хемотерапии и новым витком в фармакологии, и в 20-м веке это привело к беспрецедентному успеху в клинической медицине. Одним из самых громких достижений фармакологической промышленности 20-го века можно по праву назвать пенициллин, антибиотик, открытый в 1929 году Александром Флемингом и исследованный впоследствии Чейном и Флори. Пенициллин, обладающий антибактериальным действием, сослужил человечеству незаменимую службу в годы Второй мировой войны, сохранив жизни миллионам раненых.

Пораженные успехом пенициллина, многие фармацевтические компании открыли собственные микробиологические подразделения, возлагая на них надежды по открытию новых антибиотиков и других лекарств. Последовавшие успехи биохимии привели к тому, что стало возможным теоретически предсказывать удачные мишени для терапевтического воздействия, а также модификации химических структур лекарств, дающих новые соединения с новыми свойствами. Так, антибиотик сульфаниламид в результате ряда исследований дал начало целым семействам гипогликемических, диуретических и антигипертензивных препаратов. Драг-дизайн поднялся на качественно новый уровень, когда разработка новых лекарственных соединений стала не просто плодом работы воображения химиков, а результатом научного диалога между биологами и химиками.

Новый прорыв был связан с развитием молекулярной биологии, позволившей привлечь к разработкам информацию о геноме, клонировать гены, кодирующие терапевтически важные биологические мишени и экспрессировать их белковые продукты.

Завершение ознаменовавшего начало нового тысячелетия проекта «геном человека», в результате которого была прочитана полная информация, содержащаяся в ДНК человека, явилось настоящим триумфом раздела биологической науки, получившей название «геномика». Геномика дает совершенно новый подход к поиску новых терапевтически важных мишеней, позволяя искать их непосредственно в нуклеотидном тексте генома.

Геном человека содержит 12000–14000 генов, кодирующих секретируемые белки. На данный момент в фармацевтической промышленности используется не более 500 мишеней. Существуют исследования, говорящие, что многие заболевания являются «мультифакторными», то есть обуславливаются дисфункцией не одного белка или гена, а 5–10 связанных между собой белков и кодирующих их генов. Исходя из этих соображений можно заключить, что количество исследуемых мишеней должно увеличиться минимум в 5 раз.

Биохимическая классификация исследуемых в настоящее время биологических мишеней и их численное соотношение представлены на рисунке 2. Особо следует отметить, что бóльшую (>60%) долю рецепторов составляют мембранные G-белок сопряженные рецепторы (GPCR , G-protein coupled receptors ), а суммарный объем продаж лекарств, направленных на взаимодействие с ними, равняется 65 млрд. долл. ежегодно, и продолжает расти.

Основные понятия

Рисунок 3. Три типа влияния лигандов на клеточный ответ: увеличение ответа (положительный агонгист ), постоянство ответа, но конкурирование за связывании с другими лигандами (нейтральный агонист ) и уменьшение ответа (антагонист ).

Основные понятия, используемые в драг-дизайне - это мишень и лекарство . Мишень - это макромолекулярная биологическая структура, предположительно связанная с определенной функцией, нарушение которой приводит к заболеванию и на которую необходимо совершить определенное воздействие. Наиболее часто встречающиеся мишени - это рецепторы и ферменты. Лекарство - это химическое соединение (как правило, низкомолекулярное), специфически взаимодействующее с мишенью и тем или иным образом модифицирующее клеточный ответ, создаваемый мишенью.

Если в качестве мишени выступает рецептор, то лекарство будет, скорее всего, его лигандом, то есть соединением, специфическим образом взаимодействующим с активным сайтом рецептора. В отсутствие лиганда рецептор характеризуется собственным уровнем клеточного ответа - так называемой базальной активностью.

По типу модификации клеточного ответа лиганды делят на три группы (рис. 3):

  1. Агонисты увеличивают клеточный ответ.
  2. Нейтральные агонисты связываются с рецептором, но не изменяют клеточный ответ по сравнению с базальным уровнем.
  3. Обратные агонисты, или антагонисты понижают клеточный ответ.

Степень взаимодействия лиганда с мишенью измеряют аффинностью, или сродством. Аффинность равна концентрации лиганда, при которой половина мишеней связана с лигандом. Биологической же характеристикой лиганда является его активность, то есть та концентрация лиганда, при которой клеточный ответ равен половине максимального.

Определение и валидация мишени

Один из самых ранних и самых важных этапов драг-дизайна - выбрать правильную мишень, воздействуя на которую можно специфическим образом регулировать одни биохимические процессы, по возможности не затрагивая при этом другие. Однако, как уже было сказано, такое не всегда возможно: далеко не все заболевания являются следствием дисфункции только одного белка или гена.

С наступлением постгеномной эры, определение мишеней происходит с использованием методов сравнительной и функциональной геномики. На основании филогенетического анализа в геноме человека выявляются гены, родственные генам, функции чьих белковых продуктов уже известны, и эти гены могут быть клонированы для дальнейшего исследования.

Однако мишени, чьи функции определены лишь гипотетически, не могут служить отправной точкой для дальнейших исследований. Необходима многоступенчатая экспериментальная валидация, в результате которой может быть понята конкретная биологическая функция мишени применительно к фенотипическим проявлениям исследуемой болезни.

Существует несколько методов экспериментальной валидации мишеней:

  • геномные методы заключаются в подавлении синтеза мишени в тестовой системе путем получения мутантов с генным нокаутом (в которых ген мишени попросту отсутствует) или использования РНК-антисмысловых последовательностей, «выключающих» тот или иной ген;
  • мишени можно инактивировать с помощью моноклональных антител или облучая мишень, модифицированную хромофором, лазерным излучением;
  • мишени можно инактивировать с помощью низкомолекулярных лигандов-ингибиторов;
  • также можно непосредственно производить валидацию мишени, устанавливая ее взаимодействие с тем или иным соединением методом плазмонного резонанса.

Уровень валидации мишени повышается с числом модельных животных (специальных генетических линий лабораторных животных), в которых модификация мишени приводит к желаемому фенотипическому проявлению. Высшим уровнем валидации является, несомненно, демонстрация того, что модификация мишени (например, блокирование или нокаут рецептора или ингибирование фермента) приводит к клинически идентифицируемым и воспроизводимым симптомам у человека, однако, понятно, такое можно наблюдать достаточно редко.

Кроме того, при выборе мишени не следует забывать о таком явлении, как полиморфизм - то есть о том, что ген может существовать в разных изоформах у разных популяций или рас людей, что приведет к разному эффекту лекарства на разных больных.

Когда мишень уже найдена и проверена на валидность, начинаются непосредственные исследования, результатом которых являются многочисленные структуры химических соединений, лишь немногим из которых суждено стать лекарствами.

Исследование всех возможных с химической точки зрения лигандов («химическое пространство») невозможно: простая прикидка показывает, что возможно не менее 10 40 различных лигандов, в то время как с момента возникновения вселенной прошло лишь ~10 17 секунд. Поэтому на возможную структуру лигандов накладывается ряд ограничений, который существенно сужает химическое пространство (оставляя его, тем не менее, совершенно необъятным). В частности, для сужения химического пространства накладываются условия подобия лекарству (drug-likeness ), которые в простом случае можно выразить правилом пяти Липинского, согласно которому соединение, чтобы «быть похожим» на лекарство, должно:

  • иметь менее пяти атомов-доноров водородной связи;
  • обладать молекулярным весом менее 500;
  • иметь липофильность (log P - коэффициент распределения вещества на границе раздела вода-октанол) менее 5;
  • иметь суммарно не более 10 атомов азота и кислорода (грубая оценка количества акцепторов водородной связи).

В качестве стартового набора лигандов, исследуемых на способность связываться с мишенью, обычно используют так называемые библиотеки соединений, либо поставляемые на коммерческой основе специализирующимися на этом компаниями, либо содержащиеся в арсенале фармацевтической компании, проводящей разработку нового лекарства или заказавшей его у сторонней фирмы. Такие библиотеки содержат тысячи и миллионы соединений. Этого, конечно, совершенно недостаточно для тестирования всех возможных вариантов, но этого, как правило, и не требуется. Задачей на этом этапе исследования является выявление соединений, способных после дальнейшей модификации, оптимизации и тестирования дать «кандидат» - соединение, предназначенное для тестирования на животных (доклинические исследования) и на людях (клинические исследования).

Этот этап осуществляется с помощью высокопроизводительного скрининга (in vitro ) или его компьютерного (in silico ) анализа - высокопроизводительного докинга.

Комбинаторная химия и высокопроизводительный скрининг

Скринингом называется оптимизированная конвейеризованная процедура, в результате которой большое количество химических соединений (>10 000) проверяется на аффинность или активность по отношению к специальной тестовой (имитирующей биологическую) системе. По производительности различают разные виды скрининга:

  • низкопроизводительный (10000–50000 образцов);
  • среднепроизводительный (50000–100000 образцов);
  • высокопроизводительный (100000–5000000+ образцов).

Для скрининга как для «промышленной» процедуры очень критична эффективность, стоимость и время, потраченное на операцию. Как правило, скрининг производится на роботизированных установках, способных работать в круглосуточном и круглогодичном режиме (рис. 4).

Рисунок 4. Аппаратура, используемая для высокопроизводительного скрининга. А - Роботизированная пипетка, в автоматическом высокопроизводительном режиме наносящая образцы тестируемых соединений в плашку с системой для скрининга. Типичное количество углублений на плашке - тысячи. Объем системы в одной лунке - микролитры. Объем вносимого образца - нанолитры. Б - Установка для высокопроизводительного скрининга и считывания флуоресцентного сигнала Mark II Scarina. Работает с плашками, содержащими 2048 углублений (NanoCarrier). Полностью автоматическая (работает в круглосуточном режиме). Производительность - более 100 000 лунок (образцов) в день.

Принцип скрининга достаточно прост: в плашки, содержащие тестовую систему (например, иммобилизованная мишень или специальным образом модифицированные целые клетки), робот раскапывает из пипетки исследуемые вещества (или смесь веществ), следуя заданной программе. Причем на одной плашке могут находиться тысячи «лунок» с тестовой системой, и объем такой лунки может быть очень мал, так же как и объем вносимой пробы (микро- или даже нанолитры).

Потом происходит считывание данных с плашки, говорящее о том, в какой лунке обнаружена биологическая активность, а в какой - нет. В зависимости от используемой технологии детектор может считывать радиоактивный сигнал, флюоресценцию (если система построена с использованием флуоресцентных белков), биолюминесценцию (если используется люциферин-люциферазная система или ее аналоги), поляризацию излучения и многие другие параметры.

Обычно в результате скрининга количество тестируемых соединений сокращается на 3–4 порядка. Соединения, для которых в процессе скрининга выявлена активность выше заданного значения, называются прототипами. Однако следует понимать, что такие «удачи» еще очень и очень далеки от конечного лекарства. Лишь те из них, которые сохраняют свою активность в модельных системах и удовлетворяют целому ряду критериев, дают предшественников лекарств, которые используются для дальнейших исследований.

Как уже было сказано, даже библиотеки, содержащие более миллиона соединений, не в состоянии представить все возможное химическое пространство лигандов. Поэтому при проведении скрининга можно выбрать две различные стратегии: диверсификационный скрининг и сфокусированный скрининг . Различие между ними заключается в составе используемых библиотек соединений: в диверсификационном варианте используют как можно более непохожие друг на друга лиганды с целью охватить как можно большую область химического пространства, при сфокусированном же, наоборот, используют библиотеки родственных соединений, полученных методами комбинаторной химии, что позволяет, зная приблизительную структуру лиганда, выбрать более оптимальный его вариант. Здравый смысл подсказывает, что в масштабном проекте по созданию нового лекарственного препарата следует использовать оба этих подхода последовательно - сначала диверсификационный, с целью определения максимально различных классов удачных соединений, а потом - сфокусированный, с целью оптимизации структуры этих соединений и получения рабочих прототипов.

Если для мишени известно так называемое биологическое пространство, то есть какие-либо характеристики лигандов (размер, гидрофобность и т.д.), которые могут с ней связываться, то при составлении библиотеки тестируемых соединений выбирают лиганды, попадающие в «пересечение» биологического и химического пространств, так как это заведомо повышает эффективность процедуры.

Структуры прототипов, полученные в результате скрининга, далее подвергаются разнообразным оптимизациям, проводимым в современных исследованиях, как правило, в тесном сотрудничестве между различными группами исследователей: молекулярными биологами, фармакологами, моделистами и медицинскими химиками (рис. 5).

Рисунок 5. Фармакологический цикл. Группа молекулярной биологии отвечает за получение мутантных мишеней, группа фармакологии - за измерение данных по активности и аффинности синтезированных лигандов на мишенях дикого типа и мутантных, группа моделирования - за построение моделей мишеней, предсказание их мутаций и предсказание структур лигандов, группа медицинской химии - за синтез лигандов.

С каждым оборотом такого «фармакологического цикла» прототип приближается к предшественнику и затем к кандидату, который уже тестируется непосредственно на животных (доклинические испытания) и на людях - в процессе клинических испытаний.

Таким образом, роль скрининга заключается в существенном сокращении (на несколько порядков) выборки прототипов (рис. 6).

Рисунок 6. Роль высокопроизводительного скрининга в разработке нового лекарственного препарата. Скрининг, будь то его лабораторный (in vitro ) или компьютерный (in silico ) вариант, - главная и наиболее ресурсоемкая процедура по выбору стартовых структур лекарств (прототипов) из библиотек доступных соединений. Выходные данные скрининга часто являются отправной точкой для дальнейшего процесса разработки лекарства.

Клинические исследования

Медицина - это область, в которой ни в коем случае не следует спешить. В особенности, если речь идет о разработке новых лекарственных препаратов. Достаточно вспомнить историю с препаратом Талидамидом, разработанным в конце 50-х в Германии, применение которого беременными женщинами приводило к рождению детей с врожденными пороками конечностей, вплоть до их полного отсутствия. Этот побочный эффект не был вовремя выявлен во время клинических исследований в силу недостаточно тщательного и аккуратного тестирования.

Поэтому в настоящее время процедура тестирования лекарств достаточно сложна, дорога и требует значительного времени (2–7 лет тестирования в клинике и от 100 миллионов долларов на одно соединение-кандидат, см. рис. 7).

Рисунок 7. Процесс разработки нового лекарства занимает от 5 до 16 лет. Затраты на клиническое тестирование одного соединения-кандидата составляют более 100 миллионов долларов США. Суммарная стоимость разработки, с учетом препаратов, не достигших рынка, часто превышает 1 миллиард долларов.

Прежде всего, еще до поступления в клинику, препараты исследуются на токсичность и канцерогенность, причем исследования должны проводиться, кроме систем in vitro , как минимум на двух видах лабораторных животных. Токсичные препараты, само собой, в клинику не попадают, за исключением тех случаев, когда они предназначены для терапии особо тяжелых заболеваний и не имеют пока менее токсичных аналогов.

Кроме того, препараты подвергаются фармакокинетическим исследованиям, то есть тестируются на такие физиологические и биохимические характеристики, как поглощение, распределение, метаболизм и выведение (по-английски обозначается аббревиатурой ADME - Absorption, Distribution, Metabolism and Extraction ). Биодоступность, например, является подхарактеристикой введения препарата в организм, характеризующая степень потери им биологических свойств при введении в организм. Так, инсулин, принимаемый перорально (через рот), имеет низкую биодоступность, так как, будучи белком, расщепляется желудочными ферментами. Поэтому инсулин вводят либо подкожно, либо внутримышечно. По этой же причине часто разрабатывают препараты, действующие аналогично своим природным прототипам, но имеющие небелковую природу.

Юридически процесс клинических исследований новых препаратов имеет очень много нюансов, так как они требуют огромного количества сопроводительной документации (в сумме несколько тысяч страниц), разрешений, сертификаций и т.д. Кроме того, многие формальные процедуры сильно разнятся в разных странах в силу различного законодательства. Поэтому, для решения этих многочисленных вопросов, существуют специальные компании, принимающие от крупных фармацевтических компаний заказ на проведение клинических испытаний и перенаправляющие их в конкретные клиники, сопровождая весь процесс полной документацией и следя, чтобы никакие формальности не были нарушены.

Роль вычислительной техники в драг-дизайне

В настоящее время в драг-дизайне, как и в большинстве других наукоемких областей, продолжает увеличиваться роль вычислительной техники. Следует сразу оговорить, что современный уровень развития компьютерных методик не позволяет разработать новый лекарственный препарат, используя только компьютеры. Основные преимущества, которые дают вычислительные методы в данном случае - это сокращение времени выпуска нового лекарства на рынок и снижение стоимости разработки.

Основные компьютерные методы, используемые в драг-дизайне, это:

  • молекулярное моделирование (ММ);
  • виртуальный скрининг;
  • дизайн новых лекарственных препаратов de novo ;
  • оценка свойств «подобия лекарству»;
  • моделирование связывания лиганд-мишень.

Методы ММ, основывающиеся на структуре лиганда

В случае, если ничего не известно про трехмерную структуру мишени (что случается достаточно часто), прибегают к методикам создания новых соединений исходя из информации о структуре уже известных лигандов и данных по их активности.

Подход основывается на общепринятой в химии и биологии парадигме, гласящей, что структура определяет свойства. Основываясь на анализе корреляций между структурой известных соединений и их свойствами, можно предсказать структуру нового соединения, обладающего желаемыми свойствами (или же, наоборот, для известной структуры предсказать свойства). Причем, этот подход используется как при модификации известных структур с целью улучшения их свойств, так и при поиске новых соединений используя скрининг библиотек соединений.

Методы определения похожести молекул (или методы отпечатков пальцев) состоят в дискретном учете определенных свойств молекулы, называемых дескрипторами (например, число доноров водородной связи, число бензольных колец, наличие определенного заместителя в определенном положении и т.д.) и сравнивании получившегося «отпечатка» с отпечатком молекулы с известными свойствами (используемой в качестве образца). Степень похожести выражается коэффициентом Танимото, изменяющимся в диапазоне 0–1. Высокая похожесть предполагает близость свойств сравниваемых молекул, и наоборот.

Методы, основывающиеся на известных координатах атомов лиганда, называются методами количественной связи между структурой и активностью (QSAR , Quantitative Structure-Activity Relationship ). Один из наиболее используемых методов этой группы - метод сравнительного анализа молекулярных полей (CoMFA , Comparative Molecular Field Analysis ). Этот метод заключается в приближении трехмерной структуры лиганда набором молекулярных полей, отдельно характеризующих его стерические, электростатические, донорно-акцепторные и другие свойства. CoMFA модель строится на основании множественного регрессионного анализа лигандов с известной активностью и описывает лиганд, который должен хорошо связываться с исследуемой мишенью, в терминах молекулярных полей. Полученный набор полей говорит, в каком месте у лиганда должен быть объемный заместитель, а в каком - маленький, в каком полярный, а в каком - нет, в каком донор водородной связи, а в каком - акцептор, и т.д.

Модель может использоваться в задачах виртуального скрининга библиотек соединений, выступая в данном случае аналогом фармакофора. Самым главным недостатком этого метода является то, что он обладает высокой предсказательной силой лишь на близких классах соединений; при попытке же предсказать активность соединения другой химической природы, чем лиганды, использовавшиеся для построения модели, результат может оказаться недостаточно достоверным.

Схема возможного процесса создания нового лекарства, основывающегося на структуре лиганда, приведена на рисунке 8.

Рисунок 8. Пример молекулярного моделирования, основывающегося на структуре лиганда. Для циклического пептида уротензина II (внизу слева ) определена трехмерная структура методом ЯМР спектроскопии водного раствора (вверху слева ). Пространственное взаиморасположение аминокислотных остатков мотива ТРП-ЛИЗ-ТИР, являющегося важным для биологической функции, было использовано для построения модели фармакофора (вверху справа ). В результате виртуального скрининга найдено новое соединение, демонстрирующее биологическую активность (внизу справа ).

Очевидно, что достоверность моделирования, как и эффективность всего процесса конструирования нового лекарства, можно существенно повысить, если учитывать данные не только о структуре лигандов, но и о структуре белка-мишени. Методы, учитывающие эти данные, носят общее название «драг-дизайн, основывающийся на структурной информации» (SBDD , Structure-Based Drug Design ).

Методы ММ, основывающиеся на структуре белка

В связи с растущим потенциалом структурной биологии, все чаще можно установить экспериментальную трехмерную структуру мишени, или построить ее молекулярную модель, основываясь на гомологии с белком, чья трехмерная структура уже определена.

Наиболее часто используемые методы определения трехмерной структуры биомакромолекул с высоким разрешением (Часто, когда экспериментальная структура мишени все же недоступна, прибегают к моделированию на основании гомологии - методу, для которого показано, что построенная им модель обладает достаточно высоким качеством, если гомология между структурным шаблоном и моделируемым белком не ниже 40%.

Особенно часто к моделированию по гомологии прибегают при разработке лекарств, направленных на G-белок сопряженные рецепторы, так как они, будучи мембранными белками, очень плохо поддаются кристаллизации, а методу ЯМР пока недоступны такие большие белки. Для этого семейства рецепторов известна структура только одного белка - бычьего родопсина, полученная в 2000 г. в Стэнфорде, которая и используется в качестве структурного шаблона в подавляющем числе исследований .

Обычно при исследовании, базирующемся на структурных данных, учитывают также данные по мутагенезу мишени, чтобы установить, какие аминокислотные остатки наиболее важны для функционирования белка и связывания лигандов. Эти сведения особенно ценны при оптимизации построенной модели, которая, будучи лишь производной от структуры белка-шаблона, не может учитывать всей биологической специфики моделируемого объекта.

Трехмерная структура мишени, кроме того, что может объяснить молекулярный механизм взаимодействия лиганда с белком, используется в задачах молекулярного докинга, или компьютерном моделировании взаимодействия лиганда с белком. Докинг использует в качестве стартовой информации трехмерную структуру белка (на данном этапе развития технологии, как правило, конформационно неподвижную), и структуру лиганда, конформационная подвижность и взаиморасположение с рецептором которого моделируется в процессе докинга. Результатом докинга является конформация лиганда, наилучшим образом взаимодействующая с белковым сайтом связывания, с точки зрения оценочной функции докинга, приближающей свободную энергию связывания лиганда. Реально, в силу множества приближений, оценочная функция далеко не всегда коррелирует с соответствующей экспериментальной энергией связывания.

Докинг позволяет сократить затраты средств и времени за счет проведения процедуры, аналогичной высокопроизводительному скринингу, на компьютерных комплексах. Эта процедура называется виртуальным скринингом, и основным ее преимуществом является то, что для реальных фармакологических испытаний нужно приобретать не целую библиотеку, состоящую из миллиона соединений, а только «виртуальные прототипы». Обычно же, с целью избежания ошибок, скрининг и докинг используются одновременно, взаимно дополняя друг друга (рис. 9).

Рисунок 9. Два варианта совместного использования высокопроизводительного скрининга и молекулярного моделирования. Сверху: последовательный итеративный скрининг. На каждом шаге процедуры используется сравнительно небольшой набор лигандов; по результатам скрининга строится модель, объясняющая связь между структурой и активностью. Модель используется для выбора следующего набора лигандов для тестирования. Снизу: «разовый» скрининг. На каждом шаге модель строится по обучающей выборке и используется для предсказаний на тестовой выборке.

С увеличением компьютерных мощностей и появлением более корректных и физичных алгоритмов, докинг будет лучше оценивать энергию связывания белка с лигандом, начнет учитывать подвижность белковых цепей и влияние растворителя. Однако, неизвестно, сможет ли виртуальный скрининг когда-нибудь полностью заменить реальный биохимический эксперимент; если да - то для этого необходим, очевидно, качественно новый уровень алгоритмов, неспособных на сегодняшний день абсолютно корректно описать взаимодействие лиганда с белком.

Одно из явлений, иллюстрирующих несовершенство алгоритмов докинга, - парадокс похожести. Этот парадокс заключается в том, что соединения, структурно совсем немного различающиеся, могут иметь драматически различную активность, и в то же время с точки зрения алгоритмов докинга быть практически неразличимыми.

Прототипы лекарства можно получать не только выбирая из уже подготовленной базы данных соединений. Если есть структура мишени (или хотя бы трехмерная модель фармакофора), возможно построение лигандов de novo, используя общие принципы межмолекулярного взаимодействия. При этом подходе в сайт связывания лиганда помещается один или несколько базовых молекулярных фрагментов, и лиганд последовательно «наращивается» в сайте связывания, подвергаясь оптимизации на каждом шаге алгоритма. Полученные структуры, так же, как и при докинге, оцениваются с помощью эмпирических оценочных функций.

Ограничения применения компьютерных методов

Несмотря на всю свою перспективность, компьютерные методы имеют ряд ограничений, которые необходимо иметь ввиду, чтобы правильно представлять себе возможности этих методов.

Прежде всего, хотя идеология in silico подразумевает проведение полноценных компьютерных экспериментов, то есть экспериментов, результаты которых ценны и достоверны сами по себе, необходима обязательная экспериментальная проверка полученных результатов. То есть, подразумевается тесное сотрудничество научных групп, проводящих компьютерный эксперимент, с другими экспериментальными группами (рис. 5).

Кроме того, компьютерные методы пока не в силах учесть всего разнообразия влияния лекарственного препарата на организм человека, поэтому эти методы не в силах ни упразднить, ни даже существенно сократить клиническое тестирование, занимающее основную долю времени в разработке нового препарата.

Таким образом, на сегодняшний день роль компьютерных методов в драг-дизайне сводится к ускорению и удешевлению исследований, предшествующих клиническим испытаниям.

Перспектива драг-дизайна

Рациональная разработка новых лекарств в индустрии, в свою очередь, облегчается, когда фундаментальная биохимическая природа нормальных и болезненных процессов более широко, хотя и не полностью, изучена в академических лабораториях и становится понятной

В большинстве случаев новые лекарства создаются в промышленных, а не в академических лабораториях. Эти два процесса дополняют один другой, так как отличаются разными подходами к решению одной и той же проблемы. Сотрудники академических лабораторий часто с большим интересом используют открытия ученых индустриальных центров в качестве инструмента при выяснении основных механизмов действия препаратов. Открытия в области индустрии вносят большой вклад в фундаментальные исследования в области фармакологии: так были открыты механизмы действия, например, таких препаратов, как ацетилсалициловая кислота, циметидин. Рациональная разработка новых лекарств в индустрии, в свою очередь, облегчается, когда фундаментальная биохимическая природа нормальных и болезненных процессов более широко, хотя и не полностью, изучена в академических лабораториях и становится понятной. Например, создание блокаторов гистаминовых рецепторов зависело от познания того, что гистамин высвобождается в организме и служит медиатором при развитии крапивницы, сенной лихорадки, а также участвует в нормальной секреции кислоты в желудке. Эффективность аллопуринола при подагре могла быть предсказана благодаря установленным путям синтеза в организме мочевой кислоты.

Исцеление человека от рака , весьма вероятно, станет возможным, если станут известны детали биохимических процессов в злокачественных и интактных клетках, а не вследствие эмпирического тестирования десятков тысяч химических веществ, взятых случайно или потому, что они имеют отношение к существующим относительно неселективным и неэффективным противораковым препаратам. Лекарственные вещества тестируются на животных, у которых рак вызывают искусственно, или на линиях животных, которые были выведены специально для получения этого заболевания с высокой частотой, а также на культурах ткани (хотя в этих условиях клетки приобретают новые свойства). Чаще всего цель исследований в фармацевтической промышленности может быть сформулирована просто: создание прибыльных лекарств . Для того чтобы препарат стал прибыльным, он должен быть и полезным и безопасным, а эти его качества в конечном итоге оцениваются клиницистом. Задача фармаколога заключается в предсказании этих свойств по экспериментальным данным на животных с учетом ограничений, возможностей факультетов и их сотрудников. Эта задача должна быть выполнена таким образом, чтобы была сведена к минимуму возможность пропуска полезного лекарственного вещества; другими словами, скринирующие программы должны быть эффективными. Было отмечено, что создатели лекарств пытаются ограничиться «подделками», для того «чтобы ввести в заблуждение» организм больного; и в этом имеется доля истины. Наибольшие трудности экспериментальной фармакологии заключаются в такой организации экспериментов на животных, чтобы можно было собрать максимальное количество информации при использовании относительно малого числа животных и чтобы эта информация имела отношение к человеческой физиологии и патологии. Например, особенно трудно спланировать эксперименты на животных для тестирования лекарств, если их возможная эффективность направлена на коррекцию психических нарушений у человека, но относительно легко при изучении антикоагулянтных эффектов, так как тромбоциты у животных и человека имеют сходные механизмы и определить способность свертывания крови несложно.

Разработка лекарств

Лекарственные вещества можно планировать ; эта цель может быть достигнута довольно часто. Различают четыре принципиальных подхода к разработке лекарственных веществ.

  1. Синтез аналогов или антагонистов естественных гормонов, аутакоидов или медиаторных субстанций, или молекул, изменяющих изученные биохимические процессы, позволяет создать принципиально новые средства, оказывающие терапевтическое действие, например блокаторы Н2-гистаминовых рецепторов, дофаминовые агонисты и антагонисты, блокаторы кальциевых каналов и простагландины. Продуктивность такого подхода к решению проблемы создания новых эффективных лекарств служит веским аргументом в пользу необходимости проведения фундаментальных научных исследований и всесторонней их поддержки со стороны общества. Только понимание сущности процессов, происходящих в здоровом организме, и их нарушение при заболевании позволяет решить вопрос о путях воздействия на организм для достижения здоровья и счастья человечества (тот факт, что вполне серьезные попытки изучения могут ни к чему не привести, лишь обосновывает необходимость дальнейших и более совершенных исследований, а не отказ от них или прекращение их).
  2. Изменение структуру известных лекарств, вероятно, позволит создать массу препаратов, обладающих сходными свойствами, но принципиально не отличающихся друг от друга. Однако модификация молекулы, произведенная целенаправленно, может привести к изменениям в структуре столь важным, что это позволяет устранить в лекарстве одни свойства и придать ему совершенно новую активность, что приводит к созданию принципиально новых лекарственных средств, например сульфаниламидов (противобактериальные), производных сульфомочевины (гипогликемические), тиазидных соединений (диуретики), диакарба (ингибитор карбоангидразы), ацетазоламида, применяемого при глаукоме. Все они происходят от первых сульфаниламидов, синтезированных в 30-е годы.
  3. Рандомизированный скрининг. Принципиально новые химические вещества, синтезированные или полученные из природных источников, подвергаются скринирующему исследованию на животных с помощь набора тестов, предназначенных для выполнения интересующих исследователя эффектов. Подобный скрининг в настоящее время представляет собой очень сложное исследование.
  4. Выявление новых свойств у лекарств, уже применяющихся в клинике, в результате тщательного обследования и наблюдения за их действием на различные системы организма. Например, таким образом было установлено гипотензивное свойство бета-адреноблокаторов, противотромботическая активность у ацетилсалициловой кислоты.

Процесс создания нового лекарства

Процесс создания нового лекарства можно представить следующим образом. A. Идея или гипотеза. Б. Синтез веществ. B. Исследования на животных [разные (мыши, крысы, морские свинки, кролики, кошки, собаки, обезьяны) при исследовании разных веществ]. I. Фармакология. 1. Свойство, лежащее в основе предполагаемого терапевтического действия. 2. Другие виды действия: классификация по основным физиологическим системам. 3. Взаимодействие с другими лекарственными средствами, с которыми в дальнейшем возможно сочетанное использование (эти исследования можно проводить на последних этапах изучения). 4. Фармакокинетика: токсикологические исследования не могут проводиться в достаточной степени удовлетворительно без данных о фармакокинетике вещества в организме тех видов животных, на которых проводят изучение токсичности. II. Токсикологические методы исследования. 1. Однократное введение дозы (острая токсичность). 2. Повторное введение вещества (подострая, промежуточная и хроническая токсичность). 3. Обычные исследования по токсичности: а) по крайней мере, используют два вида млекопитающих (только один из них относится к грызунам); б) по крайней мере, два разных пути введения, из них один, которым предполагается пользоваться при лечении человека; в) регистрация признаков проявления токсичности с изучением механизма развития смерти; определяют характер поражения (органов-мишеней), т. е. недостаточно указать, что доза, в 10 раз большая той, что предложена для лечения больного, не вызывала повреждения в организме животных. 4. Продолжительность исследований при повторном введении препарата: 5. Изучение токсичности на животных при повторном введении лекарственного вещества обычно подразделяют на два периода: кратковременный (2-4 нед), при котором получают ориентировочную информацию для планирования дальнейших опытов, и длительный: а) применение трех доз: малая, близкая к предполагаемой терапевтической у человека, максимальная для выявления предполагаемой токсичности и промежуточная; б) если лекарственное вещество представляет собой предшественник (пролекарство), т.е. в исходном виде инертно и требуется, чтобы оно подверглось метаболическим превращениям в организме для перехода в активную форму, то необходимо, чтобы у каждого вида экспериментальных животных также было установлено его превращение в активную форму; в) препарат следует вводить животным в течение 7 дней. В прошлом, однако, это происходило по-другому. Очевидно, некоторым фирмам было удобно принять в качестве примера для подражания 5-дневную рабочую неделю для человека как вполне подходящую для проведения экспериментов на животных той же продолжительности; г) контролируемые исследования (мониторинг) на животных должны включать в себя следующее: определение объема потребляемого корма, массы тела, изменения поведенческих реакций и состояния, исследование крови, биохимические показатели и анализ мочи (для определения функции органа), а также другой контроль, в частности визуальный за соответствующими особенностями данного препарата либо за его приемом животными; д) всем животным, погибшим во время исследования, необходимо произвести аутопсию (следует помнить о необходимости предупреждения каннибализма животных), так как это чревато потерей потенциально ценных данных; е) по завершении периода исследования всех животных забивают, а их органы подвергают гистологическим исследованиям; перечень тканей, необходимых для проведения исследования (в Великобритании), составляет 30 наименований; ж) существуют исключения для большинства или для всего перечисленного выше; например, практически невозможно изучить такой терапевтический эффект, как развитие гипогликемии, так как она может быть вызвана применением очень высокой дозы препарата; не всегда возможно изучить токсические изменения в органах-мишенях. III. Специальные токсикологические методы исследования. 1. Мутагенность. Бактериологические тесты на мутагенность позволяют определить очаг мутации (парные в генах-регуляторах и повреждения клеточных макромолекул). Их требуется проводить всегда. Недостаточно подвергать микроорганизмы воздействию препаратов только в условиях in vitro, так как в организме животных или человека могут образовываться метаболиты лекарственного вещества, обладающие мутагенными свойствами. Необходимы тесты, разработанные на животных, например внутрибрюшинное введение микроорганизмов.2. Проведения исследований на канцерогенность не требуется до начала ранних фаз испытания на человеке, если только отсутствуют серьезные основания предполагать вероятность канцерогенного действия препарата: например, при исследовании на мутагенность получен положительный результат, структура препарата и его метаболитов у человека позволяет предположить его канцерогенность или гистопатологические изменения в органах, полученные при изучении хронической токсичности, заставляют подозревать вероятность мутаций. Если предполагается, что человек будет получать лекарственное средство более года, тогда в эксперименте исследование на канцерогенность должно проводиться в полном объеме (на протяжении почти всей жизни животного). Изучение канцерогенности (онкогенности) включает в себя: а) исследования на двух видах животных с установленной низкой частотой развития спонтанных опухолей; б) получение необходимых данных о метаболизме лекарственного средства; в) использование трех доз: высокой, но с учетом минимального токсического воздействия; низкой, превосходящей терапевтическую (фармакологически эффективная доза) в 2-3 приема; промежуточную (средняя геометрическая между высокой и низкой дозами); г) продолжительность исследования у крыс – 24 мес (и дополнительно в течение 6 мес для оценки результатов), у мышей и хомяков – 18 мес, т. е. на протяжении большего периода их жизни. По мере продолжительности исследования повышается ценность животных, так как их падеж при эпидемиях или по другим причинам, не имеющим отношения к проводимому исследованию, вызывает необходимость повторного изучения; это может на многие годы затянуть программу испытаний на безопасность препарата; д) после завершения тестов, согласно имеющимся инструкциям (в Великобритании), должно быть проведено гистологическое исследование 30 видов тканей организма; однако этот список неисчерпаем и следует принимать во внимание особые обстоятельства, возникающие при исследовании; е) определение: новообразованием (опухолью) считают популяцию патологических клеток с неконтролируемой обычно повышенной пролиферативной активностью и с другими менее четкими морфологическими и функциональными изменениями; они развиваются независимо от фактора, индуцировавшего их возникновение (за исключением индуцированных вирусом опухолей); злокачественная опухоль проникает в окружающие ткани и/или метастазирует; ж) интерпретация полученных результатов; самым достоверным методом, доказывающим опасность изучения канцерогенности вещества для человека, является эпидемиологическое исследование; несмотря на то что большинство веществ, канцерогенных для человека, оказались канцерогенными и для животных, все же неизвестно, насколько вещества, канцерогенные для животных, канцерогенны и для человека. «Экстраполяция на человека данных, полученных в эксперименте, – трудная, а иногда и произвольная процедура…»

«Вероятность риска канцерогенности у человека увеличивается, если обнаруживают большой размер злокачественных опухолей, распространяющихся на специфические ткани, при этом животное получало исследуемое вещество тем же путем, каким его получает и человек, а доза вещества равна или меньше той, что вызывает минимальную токсичность. При прочих обстоятельствах исследуемое вещество считается слабым канцерогеном, и риск его применения сопоставляется с его ценностью в качестве лечебного средства». з) существует настоятельная необходимость в разработке кратковременных тестов для определения канцерогенности исследуемого вещества. Это важно не только потому, что позволит удешевить исследования, но и ускорит их выполнение до начала введения препарата человеку. Однако доступные в настоящее время кратковременные методы исследования на мутагенность не могут заменить официально требуемое изучение канцерогенности на животных в том объеме, который позволит установить потенциальную канцерогенность препарата. Положительные результаты, полученные при кратковременном исследовании, всегда требуют проведения исследования в полном, официально требуемом объеме. Если же результаты кратковременных наблюдений были отрицательными и препарат не проявил мутагенных свойств, это не исключает необходимости выявления его канцерогенности по полной программе. Может возникнуть вопрос: почему новое соединение можно назначить человеку до завершения требуемых полных по объему исследований на канцерогенность. Ответы бывают следующими: опыты на животных имеют неопределенное предсказательное значение, обязательное завершение полных исследований на канцерогенность сделало бы разработку социально желаемого препарата до чрезвычайности дорогостоящей и даже привело бы к риску прекращения его разработки. Это могло бы задержать разработку полезного лекарственного препарата, а в то же время все возрастающее число тестов было бы проведено с веществами, которые в конечном итоге были бы запрещены по каким-либо другим причинам. Все это может представляться кому-то правильным или неправильным, но такова проблема, существующая в действительности.

IV. Влияние на репродуктивные процессы. Проводится с целью определения токсического воздействия на: мужские и женские гаметы; внутриматочный гомеостаз; эмбриогенез; плод; метаболизм в организме матери, что приводит к поражению плода; рост и развитие матки; роды; постнатальное развитие, сосательный рефлекс новорожденного и лактацию; отдаленные эффекты у потомства, например на поведение, генеративную функцию; последующее поколение. При изучении некоторых эффектов необходимо проведение эксперимента не менее чем на двух видах животных (например, при исследовании эмбриотоксичности), в других случаях достаточно одного вида (например, при определении влияния на перинатальное развитие, плодовитость). Как правило, при проведении эксперимента используют три дозы. Исследования фармакокинетики следует проводить на беременных животных, а концентрацию лекарственного вещества определяют как в организме самки, так и ее плода. Результаты аутопсии и гистологического исследования, предусмотренных при изучении влияния на репродуктивную функцию, служат основным документом при лабораторных исследованиях.

Этические вопросы использования животных при создании лекарств

Многие исследования проводятся на анестезированных животных, забитых «гуманными» методами, или на изолированных органах животных. Однако в настоящее время не существует другой модели, в которой сочетались бы взаимозависимость системы функционирования различных органов и метаболизм с образованием биологически активных продуктов превращения. Серьезные сомнения могут возникать в отношении токсикологических опытов, причиняющих животному много страданий. Все они будут совершенно неоправданными, если в результате не будут получены данные, полезные для человека. Во многих отношениях функции животных сходны с таковыми у человека, однако существуют и заметные различия.

Статистическая значимость

Если предполагается, что один метод лечения эффективнее другого, то для того, чтобы выяснить истину (в этом только кажущаяся странность), следует начать с проверки гипотезы о том, что методы в равной степени эффективны или же неэффективны. В этом случае можно говорить о гипотезе отсутствия различия (нулевая гипотеза). Так, если лечение проводилось в двух разных группах больных (сравнение между больными) или если каждый больной прошел курс лечения каждым из препаратов (сравнение на тех же больных) и при этом было обнаружено, что один из методов лечения эффективнее другого, то необходимо установить, действительно ли полученная разница обусловлена преимуществом одного метода перед другим. Статистический тест на достоверность показывает, как часто различие в величинах могло бы быть обусловлено случайностью (случайные воздействия), если в реальности отсутствует различие между методами лечения. Если же результаты теста таковы, что полученное статистическое различие все же маловероятно, так как в действительности оно отсутствует, то врач может самостоятельно решить вопрос о том, чему следует доверять, или по крайней мере поступить так, как если бы было установлено реальное преимущество одного из методов, и признать это в практической деятельности. Различия могут быть статистически достоверными, но клинически не имеющими большого значения.

Тест на статистическую достоверность в клиническом исследовании

В равной мере выявление различий может показать их отсутствие в эффективности двух методов лечения, хотя все же имеется шанс, что в действительности оно все же существует. При правильно спланированном клиническом исследовании возможно вычислить вероятность того, можно ли не заметить реального различия при определенной его величине после завершения данного объема исследований. В клинической практике следует иметь в виду, что если результаты теста на статистическую достоверность правильности «нулевой гипотезы» свидетельствуют об отсутствии различий между методами лечения только в пяти случаях при 100-кратном проведении эксперимента, то такое различие можно принять за достаточное доказательство того, что «нулевая гипотеза», по всей вероятности, неправомочна (но не невозможна), тогда как на самом деле реальное различие между методами лечения имеется. Такой уровень вероятности в терапевтических испытаниях выражается как статистически значимые различия или значимые при 5% уровне, или при р=0,05 (р означает процент, разделенный на 100, т. е. случайная пропорция).Статистическая значимость просто означает небольшую вероятность отсутствия разницы в эффективности двух методов лечения. Если при проведении математического анализа обнаруживают, что гипотеза отсутствия различий верна для наблюдаемых отклонений или еще более выраженных только однажды при 100-кратном повторении эксперимента, обычно считают, что полученные результаты статистически высокодостоверны при 1% уровне, или при р=0,01. Статистические тесты не представляют собой доказательства преимуществ того или иного метода, так как они свидетельствуют только о вероятности. Клиницист имеет право признать результаты испытания правильными при их статистической значимости (р=0,05), если у него есть достаточно доказанное теоретическое обоснование для того, чтобы ожидать подобный результат. В то же время врач может отказаться признать вывод, полученный на основании анализа, если он теоретически невозможен либо противоречит его клиническому опыту, несмотря на то что различие окажется статистически высокозначимым (р=0,001). И это будет благоразумным. Важно не оказаться в «тисках» статистических показателей, но не менее важно избежать игнорирования очевидных данных. Статистику можно определить как комплекс методов для принятия мудрого решения перед лицом неопределенности. Правильно используемый статистический анализ – очень ценный инструмент для совершенствования методов лечения. Многие исследователи считают, что статистически значимые результаты исследования – это все, что необходимо получить (редакторы стараются публиковать результаты испытаний со статистически значимыми и отвергают со статистически незначимыми различиями, так как исследования при отсутствии различий кажутся им неинтересными). Это неверно. Следует оценивать ошибки терапевтических экспериментов двух типов. I тип – выявление различий в эффективности методов лечения, хотя в действительности они отсутствуют; II тип – различие не выявлено, тогда как в действительности оно есть, причем настолько выражено, что у врачей возникает вопрос: чем оно вызвано? Клиницисту следует решить также вопрос о том, принимает ли он ошибку II типа и с каким уровнем вероятности, если он должен использовать данные исследований для лечения больных. Таким образом, только указание на статистическую значимость различия в эффективности двух методов лечения не может дать ответ на вопрос о выборе наиболее эффективного из них. Например, результаты исследований свидетельствуют о том, что статистическая достоверность различий отсутствует. Это означает, что сравниваемые между собой величины не имеют при данных условиях различий, но при других условиях, например при увеличении числа наблюдений, статистическая достоверность могла бы приобрести большую значимость, т. е. вероятность стать статистически значимым, что служит интересам клиницистов, так как позволяет доказать преимущество метода, который представляется более ценным. Отсутствие статистической достоверности различий по-разному интерпретируется в зависимости от числа обследованных больных, например 50 или 500. При увеличении числа наблюдений вероятность достоверности увеличивается. При небольшом числе такая возможность значительно меньше, хотя может быть важна клинически, несмотря на то, что изменение регистрируемого показателя реакции на лечение само по себе невелико. Статистически недостоверный результат можно интерпретировать как не имеющий клинического значения, если, по данным сообщения, доверительный интервал между полученными результатами о различии методов лечения узкий. Клинические испытания предусматривают измерение таких показателей, как боль, отеки, АД, частота приступов болей в сердце. Указание на 95% доверительный интервал для средних значений различия между двумя методами лечения означает: а) совместимость наименьших и наибольших истинных значений конкретных данных (например, эффективность метода лечения) при 5% уровне достоверности; б) диапазон, внутри которого с определенностью (95%) находятся истинные или действительно важные значения, например, разницы эффективности метода лечения. Доверительные интервалы свидетельствуют о точности проведенного исследования, а их большой диапазон – о недостаточной информативности независимо от достоверности или недостоверности зарегистрированного различия. Он предупреждает не придавать большого значения или доверия результатам небольших по объему исследований. Доверительные интервалы особенно полезны при интерпретации данных таких исследований, так как они указывают на степень неопределенности полученных результатов, например при определении разницы между двумя средними величинами (имеется или отсутствует статистическое различие). Использование средних данных в сочетании с доверительным интервалом позволяет получить правильную оценку. Так, например, если разница в эффективности двух методов лечения статистически недостоверна, а доверительный интервал для средних значений широк, то подобное различие совместимо с правомочностью «нулевой гипотезы», т. е. отсутствует реальное различие между методами лечения или частота существенного нежелательного или основного положительного эффекта, что представляется очень важным. Такая ситуация возникает лишь при небольшом числе наблюдений, ее можно избежать, если только заранее рассчитать минимальное число наблюдений, необходимое для установления с высокой вероятностью полезного эффекта, ранее определенного клиницистом, либо его отсутствие. Результаты исследования, не позволяющие прийти к определенному заключению, бесполезны и неэтичны, так как создают риск для больных, занимают у специалистов время и требуют неоправданных финансовых затрат. Спланированное исследование должно быть информативным (иметь адекватную «силу»), например, обеспечить по крайней мере 80% шанса выявления желаемого эффекта при узком доверительном интервале и 5% статистической достоверности (р=0,05). Бесполезно начинать исследования с шансом обеспечить установление цели, стоящей перед исследователями менее чем в 50% случаев, т. е. если его предсказательная «сила» слишком мала. Однако такие небольшие по объему исследования проводятся нередко, а их результаты публикуются без указания доверительных интервалов, варьирующих показателей средних, которые обнаружили бы их несостоятельность. При проведении исследований отчет должен содержать определенные сведения.

  1. Наблюдаемое различие эффективности лечения в двух группах статистически недостоверно (р>0,05), но этот результат совместим (95% доверительный интервал) с существующим реальным различием в широком диапазоне: от +30 до – 20% (т. е. при почти одинаковой величине значений противоположного знака); широкий диапазон разброса свидетельствует о том, что результаты исследований оказались бесполезными, так как не только диапазон колебаний в различии эффекта широк, но и полученные значения в различии эффекта неотличимы от нуля («крутятся» вокруг нуля).
  2. Наблюдаемое различие между группами, получающими разное лечение, статистически достоверно (р<0,05), но результат совместим с существующими различиями от 2 до 35% (в одном и том же направлении); при таком широком диапазоне различий можно не получить объективной оценки, так как клинически полезные различия в эффекте могут устанавливаться только в пределах 20%.

Если же диапазон колебаний узкий, например 30-38% и значения выше клинически необходимой минимальной величины (20%), что признается клинически важным и статистически значимым, то можно признать, что получена надежная информация, которую следует признать ценной (если она будет подтверждена данными других исследований) для обоснования рекомендаций по лечению больных. Если все сообщения в журналах сопровождались подобной информацией о статистической достоверности и доверительных интервалах, в литературе было бы меньше бесполезных и даже дезориентирующих сведений по терапевтическим испытаниям, так как редакторы отказывали бы в публикации материалов, не содержащих ценных сведений по оценке самих авторов.

Объем терапевтического исследования, число участников

До начала терапевтического исследования необходимо решить вопрос о времени его прекращения. Необходимое число больных, участвующих в нем, зависит от различий, принимаемых за клинически важные, которые следует стремиться установить заранее. Если исследователь может предварительно определить желаемое различие в эффективности лечения (как если бы он уже завершил испытание и обсуждает важность полученных результатов), то можно подсчитать число больных, необходимое для того, чтобы получить клинически значимое различие, если в действительности оно реально может существовать. Это получило название концепции разрешающей способности (силы) клинического исследования (возможность определения статистически значимого различия в пользу более подходящего метода лечения, когда различия равны или превышают клинически полезные, в которых заинтересованы врачи). Очевидно, что такой подсчет следует произвести до начала испытания, а не после его завершения, когда выявится, что его разрешающая способность слишком мала и что испытание оказалось бесполезным. Излишняя уверенность в возможности определения очень малых различий способна привести к необходимости проведения невероятно больших по объему исследований. Часто необходимо идти на компромисс, принимая во внимание имеющееся в распоряжении исследователей число больных (что обычно завышается), выполнимость задач и реальную оценку действительно имеющего клиническое значение различия. Клиницист, намеренный использовать в терапевтических исследованиях фиксированную группу больных, обычно для решения вопроса о необходимом числе участников прибегает к консультации статистика. Такая оценка может оказаться правильной, если врач сообщит статистику о величине различий, которое ему интересно определить, и о том допустимом риске, который связан с ошибками I и II типов, т. е. ошибками анализа результатов, выражающихся в признании различия, когда оно отсутствует (I тип), и к его невыявлению, когда оно существует (II тип). Результат такого подсчета обычно вызывает у клинициста шок, так как он имеет очень смутное представление об этом и обычно полон энтузиазма в отношении ожидаемого лечебного эффекта. Он начинает в таких случаях говорить о своем желании на самом деле определить «любое» различие, хотя бы и небольшое, что будет «вполне доказано», чтобы принять его за реально существующее. Однако то, что врачу может показаться вполне умеренными требованиями, на самом деле приводит к необходимости включить в испытание невероятно большое число больных. Два момента будут вполне достаточны. Если летальность составляет 20% (например, при столбняке в некоторых регионах мира), то в испытании должно участвовать около 1000 больных (подобные исследования проводились). Исследование, в котором будет с 5% достоверностью установлено преимущество одного из методов лечения (при этом эффективность последнего увеличивается с 75 до 85%), должно быть проведено на 500 участниках; в этом случае его разрешающая способность составит 80%. Ясно, что чем большее различие ожидается, тем меньше потребуется больных, участвующих в исследовании, а чем меньше ожидаемое различие, тем число их больше (эти расчеты с очевидностью показывают, почему контролируемые методы оценки лечебного эффекта лекарственных препаратов все чаще привлекают внимание исследователей). Четко проведенное исследование, позволяющее получить умеренную степень вероятности того, что его результаты подтверждаются другими исследователями, следует предпочесть исследованию, целью которого служит определение эффективности метода лечения с абсолютной надежностью. Подобное исследование или критерий неудач из-за скуки и других человеческих слабостей обеспечит получение результатов, когда испытуемое лекарственное средство уже устареет. Обычно спланированное исследование проводится с периодическим статистическим анализом (еженедельным или ежемесячным), и как только получают статистически достоверные различия в эффективности лечения, его можно считать завершенным. Однако, к сожалению, невозможно проводить лечение одновременно и периодически проводить статистическую обработку получаемых результатов с целью установить «как идут дела» или для того, чтобы прервать исследование, когда разница в результатах станет достоверной. Испытание должно быть завершено с точки зрения не только оценки результатов, но и во времени, так как ситуация может изменяться, в связи с чем могут изменяться и статистические данные; поэтому краткосрочные исследования могут быть дезориентирующими и не соответствовать истинности сравниваемых средств. Подтверждение результатов другими исследователями необходимо для прогресса не только терапии, но и науки вообще. Неразумно, достигнув недостаточного уровня статистической значимости различия (например, р-0,06), стремиться получить согласованный уровень статистической значимости (например, р=0,05) с помощью небольшого увеличения числа больных, включенных в исследования, надеясь на то, что это позволит получить р=0,05 или менее. Не следует умышленно пользоваться таким приемом для получения достоверного различия. Только возможности самих методов лечения должны быть единственными факторами, обусловливающими получение определенных результатов. Однако это лишь теоретические рассуждения, а практически нет исследователя, который в течение многих месяцев лечил бы больных, не удостоверившись в том, что происходит в наблюдаемых группах с точки зрения статистических методов оценки, и который не испытал бы при этом влияния результатов статистического анализа на принятие решения о целесообразности окончания или продолжения исследования. Строго говоря, это не согласуется со статистическими принципами, но, без сомнения, такое поведение клиницистов еще наблюдается. Это наводит на мысль о том, что самым простым решением было бы оставить все как есть, а большинство опубликованных значений мысленно признать за удвоенную величину (по сравнению с тем, что есть на самом деле). Единственной совершенно этичной и обоснованной альтернативой такому положению было бы привлечение к исследованиям квалифицированного статистика, который смог бы еженедельно подвергать данные компьютеризованному анализу для последовательного планирования. Последовательное планирование. Этот вид планирования был введен в практику в связи с очевидной необходимостью дополнительной коррекции плана исследований, которая позволила бы продолжить или прекратить их при получении статистически достоверных результатов либо при нежелательности дальнейшего их проведения. Существенная особенность такого планирования заключается в том, что испытание ограничивают заранее определенным временем, тогда как исследователю, согласно результатам, полученным к определенному моменту, следовало бы самому решать, что этот момент наступил (немногие из них могут удержаться от самостоятельного выбора момента, когда различие статистически значимо, что неизбежно приводит к получению с большой частотой положительных результатов). Метод последовательного анализа позволяет продолжить испытания, но он не лишен недостатков: например, в избранный момент необходимо получить один определенный конечный результат, хотя при многих испытаниях, например при оценке противоревматических средств, требуется оценка многих показателей. Был найден компромиссный вариант между испытанием на фиксированной группе больных и испытанием с последовательным планированием. Это позволяет проводить формальный статистический анализ в несколько заранее определенных этапов и принимать решение о продолжении или прекращении исследования. Проведение таких промежуточных анализов уменьшает статистическую достоверность, но несущественно, если их производить меньше четырех раз на протяжении длительного периода (поскольку промежуточный анализ проводят с учетом более высокого, избыточного уровня ошибки I типа, поэтому общий риск ее, принятый при планировании, к окончанию испытаний не увеличивается). Такое модифицированное последовательное планирование отражает реальные условия практической медицины и обеспечивает разумное сочетание требований статистики и медицины.Консультация статистика при планировании исследования необходима, так как по его завершении она уже не может повысить его разрешающую возможность. Тест значимости различий обоснованно может быть применен только к эксперименту, в котором единственной переменной, систематически различающейся в группах, служит эффект изучаемого препарата. Погрешности при отборе больных, их группировке, обследовании и оценке наблюдаемых под влиянием лечения изменений важнейших показателей приводят к бессмысленности статистической обработки результатов. Статистическая обработка старых историй болезни чаще ведет к заблуждениям, чем приносит пользу, и не имеет научного значения.

Чувствительность клинических методов исследований

К сожалению, клинические исследования не относятся к настолько чувствительным методам, как того хотелось бы клиницистам. Клинические испытания, в которых сравнивают показатель смертности в группах с соотношением 1:3 или более, высокодостоверны, но при разнице в соотношении менее 2:3 эффективность препаратов устанавливается с большим трудом. Эти суммарные соотношения очень важны, и все организаторы клинических исследований должны их учитывать. В связи с этим наиболее частая ошибка заключается в попытке провести исследование, при котором разница в смертности в двух сравниваемых группах не будет превышать 2:3.

Совершенно очевидно, что результаты одного исследования редко позволяют получить окончательный ответ на поставленный врачами вопрос. Подтверждающие результаты, полученные исследователями других центров, играют основную роль в установлении действительной эффективности лекарственных средств. Если при проведении исследования в многочисленных группах результаты варьируют, то пытаются собрать все материалы вместе и подвергнуть данные соответствующей статистической обработке (но нельзя просто суммировать группы). Обобщенный анализ может оказаться поучительным. Однако при этом избранные для анализа результаты должны быть высокого качества, а с обобщенными результатами следует обращаться с осторожностью.

Кто такие драг-хантеры и зачем героин применяли для лечения от кашля, в рамках «Дня биологии» Института биоорганической химии (ИБХ) РАН рассказал кандидат химических наук, инженер лаборатории моделирования биомолекулярных систем ИБХ РАН Валентин Табакмахер.

Драг-дизайн - это направленная разработка новых лекарственных препаратов с заранее заданными свойствами. В такой формулировке привлекает внимание слово «направленная», не так ли? Тут же возникает вопрос: а что, бывает «ненаправленная» разработка лекарственных препаратов? И как задают эти самые свойства? Чтобы ответить на эти вопросы, имеет смысл разобраться в общей концепции создания , какой она представляется в настоящее время. Но сначала немного истории.

В 70-х годах XIX века Пауль Эрлих, будучи еще студентом-медиком, выдвинул идею о существовании тканевых образований в организме, которые он назвал «хеморецепторами». Он предположил, что они могут специфически взаимодействовать c химическими соединениями (такие специально созданные Эрлих называл «magische Kugel» - «волшебная пуля» - прим. Indicator.Ru). Эту идею позже развил Джон Ленгли. Он постулировал, что в каждой клетке организма есть белки, которые могут связываться с химическими соединениями, менять свое состояние и таким образом управлять работой клетки и организма в целом. Что это означало для создания лекарств? С точки зрения лекарственной терапии (фармакотерапии), это означало, что в организме лекарства взаимодействуют ни с чем попало, а с конкретными молекулами.

Отсюда и специфическая терминология: эти «конкретные молекулы» организма принято называть «мишенями». Мишень - это макромолекула, связанная с определенной функцией, нарушение которой вызывает патологию. Обычно мишенями являются ферменты или клеточные рецепторы.

С другой стороны у нас лекарство - химическое соединение, специфически взаимодействующее с мишенью, таким образом влияющее на мишень и опосредованно на процессы внутри клетки. Обычно лекарствами являются низкомолекулярные соединения. Всем известна ацетилсалициловая кислота (аспирин), применяемая как жаропонижающее и противовоспалительное средство. Ее мишенью является циклооксигеназа (макромолекула) - фермент, участвующий в воспалительном процессе. Аспирин необратимо связывается с циклооксигеназой и таким образом препятствует развитию воспалительного процесса.

Как же создают лекарство? Прежде всего, нужно определиться с мишенью. Это очень сложно сделать, поскольку в развитии патологического процесса обычно участвует не один белок, а несколько. Сегодня с этой задачей успешно справляются методы сравнительной и функциональной геномики.

Если мы уже определились с тем, что является мишенью, нам нужно решить, что мы будем тестировать в отношении этой мишени, что мы будем рассматривать как потенциальное лекарство. Мы не можем протестировать все химические соединения, которые известны человечеству, их десятки миллионов. Поэтому нужно наложить какие-нибудь ограничения (обычно они называются drug-likeness, то есть «подобие лекарствам»). Во-первых, растворимость. Во-вторых, небольшой молекулярный вес. В-третьих, наличие или отсутствие определенных заряженных групп и так далее. Таким образом мы сужаем «химическое пространство» с десятков миллионов до миллиона молекул, которые будем тестировать в отношении мишени. Обычно фармкомпании используют библиотеки соединений, созданные специально для этих целей.

Следующий этап называется «скрининг» или поиск лигандов. Лиганды - это молекулы, которые стопроцентно взаимодействуют с нашей мишенью. Как проводится скрининг. Представьте себе прямоугольный кусок стекла, в котором тысяча микролитровых углублений-луночек, а в каждой из них находится наш белок-мишень. В луночку добавляется соединение, которое нужно протестировать, а потом регистрируется, есть взаимодействие или нет. Естественно это делается не людьми, а автоматически, на приборах, которые могут работать круглосуточно и даже круглогодично. Таким образом, в результате скрининга вместо миллиона потенциальных соединений мы получаем всего несколько тысяч.

На следующем этапе отобранные соединения проходят процедуру оптимизации, то есть химической модификации. От молекул «отрезают» химические группы или, наоборот, пришивают другие группы, и эти молекулы снова проходят процедуру скрининга, чтобы проверить, как изменилась активность, до сих пор ли соединение связывается с мишенью, стало оно связываться лучше или хуже. Пример распространенной модификации - ацетилирование, присоединение остатка уксусной кислоты. Аминокислота цистеин используется в терапии, например, для лечения катаракты. Ацетил-производное цистеина - ацетилцистеин (более известный как АЦЦ) - используется, например, при бронхите для разжижения мокроты. Интересно, что такая модификация очень часто используется в сфере разработки лекарств. Например, ацетилсалициловая кислота - это ацетил-производное салициловой кислоты, а парацетамол - это ацетил-производное анилина, тоже полученное ацетилированием.

В результате оптимизации отбирается несколько десятков лигандов, которые можно тестировать дальше. Следующий этап называется «тестирование». На этом этапе проверяется безопасность и эффективность исследуемого вещества. Это самый дорогой, самый трудный, самый долгий этап. Он состоит из многих шагов. Сначала вещество тестируют в лабораториях, потом на лабораторных животных, далее идут клинические исследования на людях, состоящие из множества фаз.

После истории с печально известным препаратом талидомид клиническое тестирование приобрело именно такой вид, какой оно имеет сейчас. В конце 1950-х годов в Германии этот препарат впервые был выпущен на рынок, а уже в начале 1960-х он был запрещен. Препарат был разработан для беременных женщин для снятия стресса и улучшения сна. Выяснилось, что талидомид обладает тератогенным эффектом, то есть влияет на развитие плода. В результате употребления этого препарата рождались дети с дефектами конечностей или вообще без них. Позднее, в 1980-х годах он был разрешен в США для лечения лепры (проказы). В химиотерапии при лечении рака та же самая ситуация: химиотерапия негативно влияет на все в организме, но в первую очередь она убивает рак. Талидомид, видимо, показал эффективность в отношении лепры, и еще, насколько известно, в 2006 году его использовали в США для лечения рака кожи.

Или, например, другое соединение, которое компания Bayer выпустила без должных клинических исследований в конце XIX века как лекарство от кашля на замену морфину. Сначала это вещество даже добавляли в препараты для детей, но потом выяснилось, что оно вызывает зависимость и в печени распадается на морфин. Называлось соединение героин.

Еще один пример, связанный с паллиативным влиянием правильных клинических исследований вещества. Силденафил был синтезирован для увеличения коронарного (сердечного) кровотока и лечения ишемической болезни сердца. На стадии клинического тестирования выяснилось, что оно практически не влияет на коронарный кровоток, зато улучшает кровообращение в области органов малого таза и повышает потенцию. Теперь это вещество известно как виагра.

Иногда идеи отдельных людей вносят в развитии драг-дизайна гораздо больше, чем все проверенные методы. Таких людей принято называть драг-хантерами, то есть «охотниками на лекарства». Один из них, Джеймс Блейк, исследовал способ понижения артериального давления. Известно, что адреналин регулирует артериальное давление. Блейк высказал идею, что можно создать молекулу, похожую на адреналин, связывающуюся с адреналиновым рецептором, но не обладающую активностью адреналина. В результате был получен пропранолол, более известный как анаприлин. Это вещество помогает миллионам людей каждый день.

Подобная ситуация с этим же человеком произошла, когда он исследовал гистаминовые рецепторы. В итоге был синтезирован циметидин (более известный как тагамет) - лекарство от язвенной болезни желудка и язвы двенадцатиперстной кишки. Исследования таких ученых показали, насколько важно уделять внимание структуре потенциальных соединений, а также структуре мишеней на этом фоне. Огромное развитие получили методы компьютерного моделирования молекул. Конечно, можно сократить и стоимость разработки лекарства, и уменьшить время разработки, но на сегодня невозможно создать препарат, чтобы вообще не замарать руки мокрым экспериментом в лаборатории.

Наиболее используемые методы молекулярного моделирования в драг-дизайне - это непосредственно моделирование 3D-структуры молекул, дизайн лекарств de nova (то есть «с нуля»), моделирование связывания лиганд с мишенью, а также виртуальный скрининг.

Допустим, мы знаем мишень и хорошо знакомы со структурами лигандов, например структурами адреналина, и можем синтезировать молекулу, похожую на известный лиганд, но не обладающую ненужными нам свойствами. Адреналин, связываясь с адреналиновыми рецепторами, активируется. Нужно создать пропранолол, который не будет активировать их. Почему? Потому что мы знаем секрет: структура химического соединения определяет его свойства. Существует несколько групп методов, которые направлены на моделирование лигандов, основываясь на структуре известных лигандов: например, методы определения похожести молекулы и методы количественной связи между структурой и активностью.

Если мы знаем структуру какой-то мишени, то есть взаимное расположение атомов в молекуле, мы можем смоделировать связывания какого-нибудь потенциального лиганда с этой мишенью. Такой эксперимент называется «молекулярный докинг», то есть «молекулярная стыковка». Если мы смоделируем много вариантов взаимодействия одной и той же мишени со многим лигандами, так мы проведем виртуальный скрининг. Даже если структура мишени неизвестна, можно ее смоделировать при условии, что есть структура белка, который похож на мишень.

Драг-дизайн не единственный подход к разработке лекарств или, если быть точнее, не единственный успешный подход. Иногда лекарство открывают как звезды, планеты или острова. Такой подход называется «драг-дискавери» («открытие лекарства»). В рамках этого подхода тоже тестируют соединение на определенную активность в отношении определенных мишеней. Обычно речь идет о тестировании соединений из биологических объектов. Пример взаимодействия драг-дизайна и драг-дискавери - соединение мидостаурин. Изначально оно было выделено из бактерий, а потом химически модифицировано. Сегодня оно проходит клинические испытания, предполагается, что мидостаурин поможет в лечении лейкоза и мастоцитоза.

Еще 50 лет назад многие болезни казались неизлечимыми. Но именно с использованием драг-дизайна были разработаны лекарства, которые сегодня помогают бороться с этими заболеваниями. Вероятно, развитие драг-дизайна поможет впоследствии победить такие болезни, как рак, СПИД или болезнь Альцгеймера.

Расшифровку подготовила Дарья Сапрыкина

Как создаются лекарства и вакцины? Сколько человек работает над каждым препаратом? Как убеждаются, что лекарство подействует?

Об этом нам рассказали старший научный сотрудник Института иммунологии ФМБА России, кандидат биологических наук Марина Абрамова и исполнительный директор Ассоциации организаций по клиническим исследованиям Светлана Завидова.

Вакцина от гриппа

Поговорим о создании лекарств на примере вакцины от гриппа, разработкой которой занималась наш эксперт Марина Абрамова.

Вакцин от гриппа создано много и разных. Есть «живые», в них входит цельный живой вирус, только ослабленный. Есть вакцины с частями вируса, с удалённым генетическим материалом этого микроорганизма… Но у всех у них – свои недостатки, поэтому работа над созданием всё более безопасной вакцины продолжается.

Наши учёные смогли выделить с поверхности вируса белки, на которые реагируют защитные силы нашего организма. Встретившись с такими белками, иммунная система человека их изучит, запомнит и, когда в организм попадёт полноценный живой вирус гриппа, сразу распознает «врага» и мобилизует все силы, чтобы не дать ему там запустить болезнь.

Чем меньше кусочек вируса, который используется в вакцине, тем легче человек переносит прививку. Но в то же время этот маленький кусочек хуже распознаётся иммунной системой. Значит, в вакцину надо добавить ещё такое вещество, которое помогло бы организму распознать белок вируса и выработать на него антитела – клетки, уничтожающие «врагов» организма.

Началась работа. С поверхности вируса выделили белки, которые помогают ему проникать в наши клетки, очистили их от всего ненужного: от оболочек, генетического материала, от других белков… При этом надо было добиться того, чтобы желаемый результат получался не только раз от раза и в пробирке, а постоянно. Несколько десятков человек работали над созданием вакцины около трёх лет. Забраковано было больше половины идей и предложений. А вообще неперспективные решения отсеиваются на всех этапах создания лекарственного препарата или вакцины. До потребителя может дойти лишь 1% разработок.

Безопасность прежде всего

Но вот лекарство или вакцина созданы, и начинается многоэтапная система их испытаний. Надо проверить препарат:

  • на острую токсичность, то есть не отравишься ли им;
  • на хроническую токсичность – не возникнет ли отравление, если лекарство принимать долго;
  • на репродуктивную токсичность – не повлияет ли лекарство или вакцина на здоровье потомства.

Сначала испытания идут на животных. Для каждого типа исследований предназначены свои зверьки, потому что каждый зверёк чуть более чувствителен к какому-то действию препарата. Не возникнет ли аллергия, проверяют на морских свинках. Не поднимется ли после прививки температура – на кроликах. Не отравит ли лекарство, проверяют на мышах. Но мыши не болеют гриппом, поэтому, введя им препарат от этой инфекции, нельзя понять, защитит он от болезни или нет. Зато гриппом болеют хорьки. Их можно привить, а потом заразить и посмотреть, разовьётся болезнь или нет.
На все эти проверки безопасности нового лекарства или новой вакцины уходит в среднем от 2 до 5 лет.

Четыре фазы

Дальше идут клинические исследования с участием людей. Они могут длиться от 2 до 10 лет, в среднем – 5 лет. Тут время зависит от того, насколько распространена болезнь, препарат от которой испытывается, как быстро можно набрать необходимое число больных добровольцев.

Но сначала исследования идут на небольших группах здоровых людей , чтобы посмотреть, как лекарство будет переноситься организмом, не принесёт ли оно вред. Обычно число здоровых добровольцев – 20–100 человек.

Вторая фаза исследований – больные люди. Как правило, это от 100 до 500 пациентов. Во время этой фазы подбираются дозировки, отрабатывается схема приёма препарата, оценивается его эффективность.

Третья фаза – самая массовая. В ней могут принимать участие до 10 тысяч человек из разных стран. Без международных исследований невозможно вывести препарат на мировой рынок.

И четвёртая фаза – препарат продолжает исследоваться во время регистрации и после выхода на рынок. Изучение не прекращается, так как могут возникнуть отсроченные эффекты; смотрят взаимодействие с другими лекарствами; после того как препарат или вакцина получают разрешение на применение у взрослых, начинаются исследования с участием детей.

По подсчётам Американской ассоциации производителей фармпрепаратов, разработка нового лекарства обходится сегодня фармкомпаниям в 1,8–2,4 млрд долларов! Неудивительно, что новые оригинальные препараты появляются нечасто.

Вопросы этики

Все исследования лекарств и вакцин ведутся по специальным протоколам, под контролем Совета по этике при Минздраве РФ и локальных комитетов по этике, созданных при лечебных учреждениях. Больница, имеющая право их проводить, должна получить аккредитацию на этот вид деятельности.
Проводятся исследования, как правило, слепым методом: ни сами больные, ни их лечащие врачи не знают, что получает доброволец: «пустышку» или новую разработку. Исследования нельзя проводить с участием людей «подневольных» – заключённых, военнослужащих, детей-сирот. Все добровольцы подписывают согласие на исследование.

Иногда можно услышать такую точку зрения, что привлекать к исследованиям детей аморально. Но ведь детей надо лечить современными препаратами, а для этого нужно понять, как эти препараты на них действуют.

Кстати, и взрослые пациенты, и родители больных детей редко отказываются от участия в клинических исследованиях новых лекарств, если им это предлагают их лечащие врачи. Потому что понимают, что получат новый препарат бесплатно, что будут всё время исследования находиться под пристальным наблюдением высококвалифицированных врачей.

Ещё одна страшилка обывателей, что Россия – полигон для испытаний новых зарубежных лекарств. Это не так. Во‑первых, при любом исследовании риск сводится до минимума, при неблагоприятном эффекте приём нового препарата сразу отменяется. А во‑вторых, например, в 2015 году в России на 1 млн человек приходилось всего 2 международных исследования, а в Бельгии на тот же миллион – 46, в Швейцарии – 39, в Израиле – 34,8… Объём нашего участия в международных исследованиях новых лекарств – всего 1%.

20 лет даётся фармакологической компании, разработавшей новое оригинальное лекарство, на то, чтобы вернуть свои миллиарды, потраченные на создание препарата. Это время она единолично выпускает его на международном рынке. А потом любая фармкомпания может выпустить дженерик – взять то же действующее вещество, что и у оригинального препарата, и сделать своё лекарство, которое получится намного дешевле, поскольку для выпуска дженерика не надо проводить таких тщательных и долгих исследований.