Open
Close

Регенерация ее формы. Восстановительные процессы в организме. Формы регенерации. Ритмы высокой частоты

Регенерация (от лат. regeneratio - возрождение) - процесс восстановления организмом утраченных или поврежденных структур. Регенерация поддерживает строение и функции организма, его целостность. Различают два вида регенерации: физиологическую и репаративную. Восстановление органов, тканей, клеток или внутриклеточных структур после разрушения их в процессе жизнедеятельности организма называют физиологической регенерацией. Восстановление структур после травмы или действия других повреждающих факторов называют репаративной регенерацией. При регенерации происходят такие процессы, как детерминация, дифференцировка, рост, интеграция и др., сходные с процессами, имеющими место в эмбриональном развитии. Однако при регенерации все они идут уже вторично, т.е. в сформированном организме.

Физиологическая регенерация представляет собой процесс обновления функционирующих структур организма. Благодаря физиологической регенерации поддерживается структурный гомеостаз и обеспечивается возможность постоянного выполнения органами их функций. С общебиологической точки зрения, физиологическая регенерация, как и обмен веществ, является проявлением такого важнейшего свойства жизни, как самообновление.

Примером физиологической регенерации на внутриклеточном уровне являются процессы восстановления субклеточных структур в клетках всех тканей и органов. Значение ее особенно велико для так называемых «вечных» тканей, утративших способность к регенерации путем деления клеток. В первую очередь это относится к нервной ткани.

Примерами физиологической регенерации на клеточном и тканевом уровнях являются обновление эпидермиса кожи, роговицы глаза, эпителия слизистой кишечника, клеток периферической крови и др. Обновляются производные эпидермиса - волосы и ногти. Это так называемая пролиферативная регенерация, т.е. восполнение численности клеток за счет их деления. Во многих тканях существуют специальные камбиальные клетки и очаги их пролиферации. Это крипты в эпителии тонкой кишки, костный мозг, пролиферативные зоны в эпителии кожи. Интенсивность клеточного обновления в перечисленных тканях очень велика. Это так называемые «лабильные» ткани. Все эритроциты теплокровных животных, например, сменяются за 2-4 мес, а эпителий тонкой кишки полностью сменяется за 2 сут. Это время требуется для перемещения клетки из крипты на ворсинку, выполнения ею функции и гибели. Клетки таких органов, как печень, почка, надпочечник и др., обновляются значительно медленнее. Это так называемые «стабильные» ткани.

Об интенсивности пролиферации судят по количеству митозов, приходящихся на 1000 подсчитанных клеток. Если учесть, что сам митоз в среднем длится около 1 ч, а весь митотаческий цикл в соматических клетках в среднем протекает 22-24 ч, то становится ясно, что для определения интенсивности обновления клеточного состава тканей необходимо подсчитать количество митозов в течение одних или нескольких суток. Оказалось, что количество делящихся клеток не одинаково в разные часы суток. Так был открыт суточный ритм клеточных делений, пример которого изображен на рис. 8.23.

Суточный ритм количества митозов обнаружен не только в нормальных, но и в опухолевых тканях. Он является отражением более общей закономерности, а именно ритмичности всех функций организма. Одна из современных областей биологии - хронобиология - изучает, в частности, механизмы регуляции суточных ритмов митотической активности, что имеет весьма важное значение для медицины. Существование самой суточной периодичности количества митозов указывает на регулируемость физиологической регенерации организмом. Кроме суточных существуют лунные и годичные циклы обновления тканей и органов.

В физиологической регенерации выделяют две фазы: разрушительную и восстановительную. Полагают, что продукты распада части клеток стимулируют пролиферацию других. Большую роль в регуляции клеточного обновления играют гормоны.

Физиологическая регенерация присуща организмам всех видов, но особенно интенсивно она протекает у теплокровных позвоночных, так как у них вообще очень высока интенсивность функционирования всех органов по сравнению с другими животными.

Репаративная (от лат. reparatio - восстановление) регенерация наступает после повреждения ткани или органа. Она очень разнообразна по факторам, вызывающим повреждения, по объемам повреждения, по способам восстановления. Механическая травма, например оперативное вмешательство, действие ядовитых веществ, ожоги, обморожения, лучевые воздействия, голодание, другие болезнетворные агенты,- все это повреждающие факторы. Наиболее широко изучена регенерация после механической травмы. Способность некоторых животных, таких, как гидра, планария, некоторые кольчатые черви, морские звезды, асцидия и др., восстанавливать утраченные органы и части организма издавна изумляла ученых. Ч. Дарвин, например, считал удивительными способность улитки воспроизводить голову и способность саламандры восстанавливать глаза, хвост и ноги именно в тех местах, где они отрезаны.

Объем повреждения и последующее восстановление бывают весьма различными. Крайним вариантом является восстановление целого организма из отдельной малой его части, фактически из группы соматических клеток. Среди животных такое восстановление возможно у губок и кишечнополостных. Среди растений возможно развитие целого нового растения даже из одной соматической клетки, как это получено на примере моркови и табака. Такой вид восстановительных процессов сопровождается возникновением новой морфогенетической оси организма и назван Б.П. Токиным «соматическим эмбриогенезом», ибо во многом напоминает эмбриональное развитие.

Существуют примеры восстановления больших участков организма, состоящих из комплекса органов. В качестве примера служат регенерация ротового конца у гидры, головного конца у кольчатого червя и восстановление морской звезды из одного луча (рис. 8.24). Широко распространена регенерация отдельных органов, например конечности у тритона, хвоста у ящерицы, глаз у членистоногих. Заживление кожных покровов, ран, повреждений костей и других внутренних органов является менее объемным процессом, но не менее важным для восстановления структурно-функциональной целостности организма. Особый интерес представляет способность зародышей на ранних стадиях развития восстанавливаться после значительной утраты материала. Эта способность была последним аргументом в борьбе между сторонниками преформизма и эпигенеза и привела в 1908 г. Г. Дриша к концепции эмбриональной регуляции.

Рис. 8.24. Регенерация комплекса органов у некоторых видов беспозвоночных животных. А - гидра;Б - кольчатый червь; В - морская звезда

(пояснение см. в тексте)

Существует несколько разновидностей или способов репаративной регенерации. К ним относят эпиморфоз, морфаллаксис, заживление эпителиальных ран, регенерационную гипертрофию, компенсаторную гипертрофию.

Эпителизация при заживлении ран с нарушенным эпителиальным покровом идет примерно одинаково, независимо от того, будет далее происходить регенерация органа путем эпиморфоза или нет. Эпидермальное заживление раны у млекопитающих в том случае, когда раневая поверхность высыхает с образованием корки, проходит следующим образом (рис. 8.25). Эпителий на краю раны утолщается вследствие увеличения объема клеток и расширения межклеточных пространств. Сгусток фибрина играет роль субстрата для миграции эпидермиса в глубь раны. В мигрирующих эпителиальных клетках нет митозов, однако они обладают фагоцитарной активностью. Клетки с противоположных краев вступают в контакт. Затем наступает кератинизация раневого эпидермиса и отделение корки, покрывающей рану.

Рис. 8.25. Схема некоторых событий, происходящих

при эпителизации кожной раны у млекопитающих.

А- начало врастания эпидермиса под некротическую ткань; Б- срастание эпидермиса и отделение струпа:

1 -соединительная ткань, 2- эпидермис, 3- струп, 4- некротическая ткань

К моменту встречи эпидермиса противоположных краев в клетках, расположенных непосредственно вокруг края раны, наблюдается вспышка митозов, которая затем постепенно падает. По одной из версий, эта вспышка вызвана понижением концентрации ингибитора митозов - кейлона.

Эпиморфоз представляет собой наиболее очевидный способ регенерации, заключающийся в отрастании нового органа от ампутационной поверхности. Регенерация конечности тритона и аксолотля изучена детально. Выделяют регрессивную и прогрессивную фазы регенерации.Регрессивная фаза начинается с заживления раны, во время которого происходят следующие основные события: остановка кровотечения, сокращение мягких тканей культи конечности, образование над раневой поверхностью сгустка фибрина и миграция эпидермиса, покрывающего ампутационную поверхность.

Затем начинается разрушение остеоцитов на дистальном конце кости и других клеток. Одновременно в разрушенные мягкие ткани проникают клетки, участвующие в воспалительном процессе, наблюдается фагоцитоз и местный отек. Затем вместо образования плотного сплетения волокон соединительной ткани, как это происходит при заживлении ран у млекопитающих, в области под раневым эпидермисом утрачиваются дифференцированные ткани. Характерна остеокластическая эрозия кости, что является гистологическим признакомдедифференцировки. Раневой эпидермис, уже пронизанный регенерирующими нервными волокнами, начинает быстро утолщаться. Промежутки между тканями все более заполняются мезенхимоподобными клетками. Скопление мезенхимных клеток под раневым эпидермисом является главным показателем формирования регенерационной бластемы. Клетки бластемы выглядят одинаково, но именно в этот момент закладываются основные черты регенерирующей конечности.

Затем начинается прогрессивная фаза, для которой наиболее характерны процессы роста и морфогенеза. Длина и масса регенерационной бластемы быстро увеличиваются. Рост бластемы происходит на фоне идущего полным ходом формирования черт конечности, т.е. ее морфогенеза. Когда форма конечности в общих чертах уже сложилась, регенерат все еще меньше нормальной конечности. Чем крупнее животное, тем больше эта разница в размерах. Для завершения морфогенеза требуется время, по истечении которого регенерат достигает размеров нормальной конечности.

Некоторые стадии регенерации передней конечности у тритона после ампутации на уровне плеча показаны на рис. 8.26. Время, необходимое для полной регенерации конечности, варьирует в зависимости от размера и возраста животного, а также от температуры, при которой она протекает.

Рис. 8.26. Стадии регенерации передней конечности у тритона

У молодых личинок аксолотлей конечность может регенерировать за 3 нед, у взрослых тритонов и аксолотлей за 1-2 мес, а у наземных амбистом для этого требуется около 1 года.

При эпиморфной регенерации не всегда образуется точная копия удаленной структуры. Такую регенерацию называют атипичной. Существует много разновидностей атипичной регенерации. Гипоморфоз - регенерация с частичным замещением ампутированной структуры. Так, у взрослой шпорцевой лягушки возникает шиловидная структура вместо конечности. Гетероморфоз - появление иной структуры на месте утраченной. Это может проявляться в виде гомеозисной регенерации, заключающейся в появлении конечности на месте антенн или глаза у членистоногих, а также в изменении полярности структуры. Из короткого фрагмента планарии можно стабильно получать биполярную планарию (рис. 8.27).

Встречается образование дополнительных структур, или избыточная регенерация. После надреза культи при ампутации головного отдела планарии возникает регенерация двух голов или более (рис. 8.28). Можно получить больше пальцев при регенерации конечности аксолотля, повернув конец культи конечности на 180°. Дополнительные структуры являются зеркальным отражением исходных или регенерировавших структур, рядом с которыми они расположены (закон Бэйтсона).

Рис. 8.27. Биполярная планария

Морфаллаксис - это регенерация путем перестройки регенерирующего участка. Примером служит регенерация гидры из кольца, вырезанного из середины ее тела, или восстановление планарии из одной десятой или двадцатой ее части. На раневой поверхности в этом случае не происходит значительных формообразовательных процессов. Отрезанный кусочек сжимается, клетки внутри него перестраиваются, и возникает целая особь

уменьшенных размеров, которая затем растет. Этот способ регенерации впервые описал Т. Морган в 1900 г. В соответствии с его описанием морфаллаксис осуществляется без митозов. Нередко имеет место сочетание эпиморфного роста на месте ампутации с реорганизацией путем морфаллаксиса в прилежащих частях тела.

Рис. 8.28. Многоголовая планария, полученная после ампутации головы

и нанесения насечек на культю

Регенерационная гипертрофия относится к внутренним органам. Этот способ регенерации заключается в увеличении размеров остатка органа без восстановления исходной формы. Иллюстрацией служит регенерация печени позвоночных, в том числе млекопитающих. При краевом ранении печени удаленная часть органа никогда не восстанавливается. Раневая поверхность заживает. В то же время внутри оставшейся части усиливается размножение клеток (гиперплазия) и в течение двух недель после удаления 2/3 печени восстанавливаются исходные масса и объем, но не форма. Внутренняя структура печени оказывается нормальной, дольки имеют типичную для них величину. Функция печени также возвращается к норме.

Компенсаторная гипертрофия заключается в изменениях в одном из органов при нарушении в другом, относящемся к той же системе органов. Примером является гипертрофия в одной из почек при удалении другой или увеличение лимфатических узлов при удалении селезенки.

Последние два способа отличаются местом регенерации, но механизмы их одинаковы: гиперплазия и гипертрофия.

Восстановление отдельных мезодермальных тканей, таких, как мышечная и скелетная, называют тканевой регенерацией. Для регенерации мышцы важно сохранение хотя бы небольших ее культей на обоих концах, а для регенерации кости необходима надкостница. Регенерация путем индукции происходит в определенных мезодермальных тканях млекопитающих в ответ на действие специфических индукторов, которые вводят внутрь поврежденной области. Этим способом удается получить полное замещение дефекта костей черепа после введения в него костных опилок.

Таким образом, существует множество различных способов или типов морфогенетических явлений при восстановлении утраченных и поврежденных частей организма. Различия между ними не всегда очевидны, и требуется более глубокое понимание этих процессов.

Изучение регенерационных явлений касается не только внешних проявлений. Существует целый ряд вопросов, носящих проблемный и теоретический характер. К ним относятся вопросы регуляции и условий, в которых протекают восстановительные процессы, вопросы происхождения клеток, участвующих в регенерации, способности к регенерации у различных групп, животных и особенностей восстановительных процессов у млекопитающих.

Установлено, что в конечности амфибий после ампутации и в процессе регенерации происходят реальные изменения электрической активности. При проведении электрического тока через ампутированную конечность у взрослых шпорцевых лягушек наблюдается усиление регенерации передних конечностей. В регенератах увеличивается количество нервной ткани, из чего делается вывод, что электрический ток стимулирует врастание нервов в края конечностей, в норме не регенерирующих.

Попытки стимулировать подобным образом регенерацию конечностей у млекопитающих оказались безуспешными. Так, под действием электрического тока или при сочетании действия электрического тока с фактором роста нервов удавалось получить у крысы только разрастание скелетной ткани в виде хрящевых и костных мозолей, которые не походили на нормальные элементы скелета конечностей.

Несомненна регуляция регенерационных процессов со стороны нервной системы. При тщательной денервации конечности во время ампутации эпиморфная регенерация полностью подавляется и бластема никогда не образуется. Были проведены интересные опыты. Если нерв конечности тритона отвести под кожу основания конечности, то образуется дополнительная конечность. Если его отвести к основанию хвоста - стимулируется образование дополнительного хвоста. Отведение нерва на боковую область никаких дополнительных структур не вызывает. Эти эксперименты привели к созданию концепции регенерационных полей. .

Было установлено, что для инициации регенерации решающим является число нервных волокон. Тип нерва роли не играет. Влияние нервов на регенерацию связывается с трофическим действием нервов на ткани конечностей.

Получены данные в пользу гуморальной регуляции регенерационных процессов. Особенно распространенной моделью для изучения этого является регенерирующая печень. После введения нормальным интактным животным сыворотки или плазмы крови от животных, подвергшихся удалению печени, у первых наблюдалась стимуляция митотической активности клеток печени. Напротив, при введении травмированным животным сыворотки от здоровых животных получали снижение количества митозов в поврежденной печени. Эти опыты могут свидетельствовать как о присутствии в крови травмированных животных стимуляторов регенерации, так и о присутствии в крови интактных животных ингибиторов клеточного деления. Объяснение результатов опытов затрудняется необходимостью учитывать иммунологический эффект инъекций.

Важнейшим компонентом гуморальной регуляции компенсаторной и регенерационной гипертрофии является иммунологический ответ. Не только частичное удаление органа, но и многие воздействия вызывают возмущения в иммунном статусе организма, появление аутоантител и стимуляцию процессов клеточной пролиферации.

Большие разногласия существуют по вопросу о клеточных источниках регенерации. Откуда берутся или как возникают недифференцированные клетки бластемы, морфологически сходные с мезенхимными? Существует три предположения.

1. Гипотеза резервных клеток подразумевает, что предшественниками регенерационной бластемы являются так называемые резервные клетки, которые останавливаются на некоем раннем этапе своей дифференцировки и не участвуют в процессе развития до получения стимула к регенерации.

2. Гипотеза временной дедифференцировки, или модуляции, клеток предполагает, что в ответ на регенерационный стимул дифференцированные клетки могут утрачивать признаки специализации, но затем снова дифференцируются в тот же клеточный тип, т.е., потеряв на время специализацию, они не утрачивают детерминацию.

3. Гипотеза полной дедифференцировки специализированных клеток до состояния, сходного с мезенхимными клетками и с возможной последующей трансдифференцировкой или метаплазией, т.е. превращением в клетки другого типа, полагает, что в этом случае клетка утрачивает не только специализацию, но и детерминацию.

Современные методы исследования не позволяют с абсолютной достоверностью доказать все три предположения. Тем не менее абсолютно верно, что в культях пальцев аксолотля происходит высвобождение хондроцитов из окружающего матрикса и миграция их в регенерационную бластему. Дальнейшая их судьба не определена. Большинство исследователей признают дедифференцировку и метаплазию при регенерации хрусталика у амфибий. Теоретическое значение этой проблемы заключается в допущении возможности или невозможности изменений клеткой ее программы до такой степени, что она возвращается в состояние, когда снова способна делиться и репрограммироватьсвой синтетический аппарат. Например, хондроцит становится миоцитом или наоборот.

Способность к регенерации не имеет однозначной зависимости от уровня организации, хотя давно уже было замечено, что более низко организованные животные обладают лучшей способностью к регенерации наружных органов. Это подтверждается удивительными примерами регенерации гидры, планарий, кольчатых червей, членистоногих, иглокожих, низших хордовых, например асцидий. Из позвоночных наилучшей регенерационной способностью обладают хвостатые земноводные. Известно, что разные виды одного и того же класса могут сильно отличаться по способности к регенерации. Кроме того, при изучении способности к регенерации внутренних органов оказалось, что она значительно выше у теплокровных животных, например у млекопитающих, по сравнению с земноводными.

Регенерация у млекопитающих отличается своеобразием. Для регенерации некоторых наружных органов нужны особые условия. Язык, ухо, например, не регенерируют при краевом повреждении. Если же нанести сквозной дефект через всю толщу органа, восстановление идет хорошо. В некоторых случаях наблюдали регенерацию сосков даже при ампутации их по основанию. Регенерация внутренних органов может идти очень активно. Из небольшого фрагмента яичника восстанавливается целый орган. Об особенностях регенерации печени уже было сказано выше. Различные ткани млекопитающих тоже хорошо регенерируют. Есть предположение, что невозможность регенерации конечностей и других наружных органов у млекопитающих носит приспособительный характер и обусловлена отбором, поскольку при активном образе жизни нежные морфогенетические процессы затрудняли бы существование. Достижения биологии в области регенерации успешно применяются в медицине. Однако в проблеме регенерации очень много нерешенных вопросов.

Различают следующие уровни регенерации: молекулярная, ультрасруктурная, клеточная, тканевая, органная.

23. Репаративная регенерация может быть типичной (Гомоморфоз) и атипичной (гетероморфоз). При гомоморфози восстанавливается такой же орган, как и потерян. При гетероморфози восстановлены органы отличаются от типовых. При этом восстановление утраченных органов может проходить путем епимор- фозу, морфалаксису, ендоморфозу (или регенерационной гипертрофией), компенсаторной гипертрофией.

Епиморфоз (от греч. ??? - после и????? - форма) - Это восстановление органа путем отрастания от раневой поверхности, подлежащей при этом чувственной перестройке. Ткани, прилегающих к поврежденному участки, рассасываются, происходит интенсивный деление клеток, дающих начало зачатке регенерата (бластемы). Затем происходит дифференцировка клеток и формирования органа или ткани. За типом епиморфозу проходит регенерация конечностей, хвоста, жабр в аксолотля, трубчатые кости от надкостницы после вылущивание диафиза у кроликов, крыс, мышцы от мышечной культи у млекопитающих и др.. К епиморфозу относится и рубцевания, при котором происходит закрытие ран, но без восстановления утраченного органа. Епиморфозна регенерация не всегда дает точную копию удаленной структуры. Такую регенерацию называют атипичной. Отличают несколько разновидностей атипичной регенерации.

Гипоморфоз (от греч. ??? - под, внизу и????? - форма) - регенерация с частичным замещением ампутированной структуры (у взрослого шпорцевых лягушки возникает остеподибна структура вместо конечности). Гетероморфоз (от греч. ?????? - другой, другой) - Появление другой структуры на месте утраченной (появление конечности на месте антенн или глаза у членистоногих).

Морфалаксис (от греч. ????? - форма, вид, ?????, ?? - обмен, смена) - это регенерация, при которой происходит реорганизация тканей с участка, оставшаяся после повреждения, почти без клеточного размножение путем перестройки. Из части тела путем перестройки образуется целая животное или орган меньших размеров. Затем размеры особи, что образовалась, или органа увеличиваются. Морфалаксис наблюдается в основном в низкоорганизованных животных, в то время как епиморфоз - в более високоорганизованых. Морфалаксис является основой регенерации гидр. гидроидных полипов, планарий. Часто морфалаксис и епиморфоз происходят одновременно, в сочетании.

Регенерация, что происходит внутри органа, называется ендоморфозом, или регенерационной гипертрофией. При этом восстанавливается не форма, а масса органа. Например, при краевом ранении печени отделенная часть органа никогда не восстанавливается. Поврежденная поверхность восстанавливается, а внутри другой части усиливается размножение клеток и в течение нескольких недель после удаления 2 / 3 печени восстанавливается исходная масса и объем, но не форма. Внутренняя структура печени оказывается нормальной, ее частички имеют типичный размер и функция органа восстанавливается. Близкой к регенерационной гипертрофии является компенсаторная гипертрофия, или викарная (заместительная). Этот средство регенерации связан с увеличением массы органа или ткани, вызванный активным физиологическим нагрузкам. Увеличение органа происходит за счет деления клеток и их гипертрофии.

Гипертрофия клеток заключается в росте, увеличении числа и размеров органелл. В связи с увеличением структурных компонентов клетки повышается ее жизнедеятельность и работоспособность. При компенса- полуторной гипертрофии отсутствует поврежденная поверхность.

Наблюдается этот вид гипертрофии при удалении одного из парных органов. Так, при удалении одной из почек другая испытывает повышенной нагрузки и увеличивается в размере. Компенсаторная гипертрофия миокарда часто возникает у больных гипертонической болезни (при сужении периферических кровеносных сосудов), при пороках клапанов. У мужчин при разрастании предстательной железы затрудняется выделение мочи и гипертрофируется стенка мочевого пузыря.

Регенерация происходит во многих внутренних органах после различных воспалительных процессов инфекционного происхождения, а также после эндогенных нарушений (нейроэндокринные расстройства, опухолевый рост, действие токсических веществ). Репаративная регенерация в различных тканях проходит по-разному. В коже, слизистых оболочках, соединительной ткани после повреждение происходит интенсивное размножение клеток и восстановление ткани, подобной утраченной. Такую регенерацию называют полной, или pecmu- туцийною. В случае неполного восстановления, при котором замещение происходит другой тканью или структурой, говорят о субституции.

Регенерация органов происходит не только после удаление их части хирургическим путем или в наследствии травмирования (механического, термического и др.), но и после переноса патологических состояний. Например, на месте глубоких ожогов могут быть массивные разрастание плотной соединительной рубцовой ткани, но нормальная структура кожи не восстанавливается. После перелома кости в отсутствие смещения отломков нормальное строение не восстанавливается, а разрастается хрящевая ткань и образуется ненастоящий сустав. При повреждении покровов восстанавливается как соединительнотканная часть, так и эпителий. Однако скорость размножены клеток рыхлой соединительной ткани является более высокой, поэтому эти клетки заполняют дефект, образуют венные волокна и после больших повреждений формируется рубцовая ткань. Чтобы не допустить этого, применяют пересадку кожи, взятой у той же или другого человека.

В настоящее время для регенерации внутренних органов применяют искусственные пористые каркасы, по которым растут ткани, регенерируют. Ткани прорастают через поры и целостность органа восстанавливается. Регенерацией за каркасом можно восстановить кровеносные сосуды, мочеточник, мочевой пузырь, пищевод, трахею и другие органы.

Стимуляция регенерационных процессов. При обычных условий эксперимента у млекопитающих ряд органов не регенерируется (головной и спинной мозг) или восстановительные процессы в них выражены слабо (кости свода черепа, сосуды, конечности). Однако существуют методы воздействия, которые позволяют в эксперименте (а иногда и в клинике) стимулировать регенерационные процессы и применительно отдельных органов добиться полноценного восстановление. К таким воздействиям относится замещения удаленных участков органов гомо-и гетеротранс- плантатом, который способствует заместительной регенерации. Сущность заместительной регенерации заключается в замещении или прорастании трансплантатов регенерационными тканями хозяина. Кроме того, трансплантат является каркасом, благодаря которому направлена??регенерация стенки органа.

Для инициирования стимуляции регенерационных процессов исследователи используют также ряд веществ разнообразной природы - экстракты из животных и растительных тканей, витамины, гормоны щитовидной железы, гипофиза, надпочечников и лекарственные препараты.

24. ФИЗИОЛОГИЧЕСКАЯ РЕГЕНЕРАЦИЯ

Физиологическая регенерация свойственна всем организмам. Процесс жизнедеятельности обязательно включает два момента: утрату (де­струкцию) и восстановление морфологических структур на клеточном, тканевом, органном уровнях.

У членистоногих физиологическая регенерация связана с ростом. На­пример, у ракообразных и личинок насекомых сбрасывается хитинизиро­ванный покров, становящийся тесным и тем самым препятствующий увеличению тела. Бурная смена покровов, также называемая линькой, наблюдается у змей, когда животное одномоментно освобождается от старого ороговевшего кожного эпителия, у птиц и млекопитающих при сезонной смене перьев и шерсти, У млекопитающих и человека система­тически слущивается кожный эпителий, целиком обновляющийся прак­тически в течение нескольких дней, а клетки слизистых оболочек кишечника заменяются почти ежесуточно. Сравнительно быстро происходит смена эритроцитов, средний продолжительность жизни которых около 125 дней. Это значит, что в теле человека каждую секунду гибнет около 4 млн. эритроцитов и одновременно в костном мозге образуется столько же новых красных кровяных телец.

Судьба клеток, погибших в процессе жизнедеятельности, неодинакова. Клетки наружных покровов после гибели слущиваются и попадают во внешнюю среду. Клетки внутренних органов претерпевают дальнейшие изменения и могут играть важную роль в процессе жизнедеятельности. Так, клетки слизистой оболочки кишечника богаты ферментами и после слущивания, входя в состав кишечного сока, принимают участие в пище­варении,

Погибшие клетки заменяются новыми, образующимися в результате деления. На течение физиологической регенерации влияют внешние и внутренние факторы. Так, понижение атмосферного давления вызывает увеличение количества эритроцитов, поэтому у людей, постоянно живу­щих в горах, содержание эритроцитов в крови больше, чем у живущих в долинах; такие же изменения происходят у путешественников при подъеме в горы. На число эритроцитов оказывают влияние физическая нагрузка, прием пищи, световые ванны.

О влиянии внутренних факторов на физиологическую регенерацию можно судить по следующим примерам. Денервация конечностей изме­няет функцию костного мозга, что сказывается на снижении числа эри­троцитов. Денсрвация желудка и кишечника ведет к замедлению и на­рушению физиологической регенерации в слизистой этих органов.

Б. М. Завадовский, скармливая птицам препараты щитовидной же­лезы, вызывал преждевременную бурную линьку. Циклическое обновле­ние слизистой оболочки матки находится в связи с женскими половыми гормонами и т. д. Следовательно, воздействие желез внутренней секре­ции на физиологическую регенерацию несомненно. С другой стороны, деятельность желез обусловлена функцией нервной системы и факто­рами внешней среды, например полноценным питанием, светом, микро­элементами, поступающими с пищей, и т. д.

Различают два вида регенерации - физио­логическую и репаративную.

Фи­зиологическая регенерация - непрерывное обновление структур на

клеточном (смена клеток крови, эпидермиса и др.) и внутриклеточном (обновле­ние

клеточных органелл) уровнях, которым обеспечивается функциони­рование органов и

Репаративная регенерация - процесс ликвидации структурных повреждений

после действия патогенных факторов.

Оба вида регенерации не являются обособленными, не зависимыми друг от друга.

Значение регенерации для организма опре­деляется тем, что на основе клеточ­ного

и внутриклеточного обновления органов обеспечивается широкий диапазон

приспособительных коле­баний их функциональной активно­сти в меняющихся

условиях окружа­ющей среды, а также восстановле­ние и компенсация нарушенных

под воздействием различных патоген­ных факторов функций.

Процесс регенерации развертывается на раз­ных уровнях организации -

сис­темном, органном, тканевом, клеточ­ном, внутриклеточном. Осуществля­ется

он путем прямого и непрямого деления клеток, обновления внутриклеточ­ных

органелл и их размножения. Обновление внутриклеточных струк­тур и их

гиперплазия являются универсальной формой регенерации, присущей всем без

исключения органам мле­копитающих и человека. Она выра­жается либо в форме

собственно внутриклеточной регенерации, когда после гибели части клетки ее

строение вос­станавливается за счет размножения сохранившихся органелл, либо

в ви­де увеличения числа органелл (компенсаторная гиперплазия органелл) в

одной клетке при гибели дру­гой.

Восстановление исходной массы органа после его повреждения осу­ществляется

различными путями. В одних случаях сохранившаяся часть органа остается

неизмененной или малоизмененной, а недостающая его часть отрастает от раневой

по­верхности в виде четко отграничен­ного регенерата. Такой способ

вос­становления утраченной части орга­на называют эпиморфозом . В других

случаях происходит перестройка оставшейся части органа, в про­цессе которой

он постепенно приоб­ретает исходные форму и размеры. Этот вариант процесса

регенерации называют морфаллаксисом. Чаще эпиморфоз и морфаллаксис

встречаются в раз­личных сочетаниях. Наблюдая уве­личение размеров органа

после его повреждения, прежде говорили о его компенсаторной гипертрофии.

Цитологический анализ этого процесса показал, что в его основе лежит

размножение клеток, т. е. регенераторная реакция. В связи с этим процесс

получил название «регенерацнонная гипертрофия».

Эффективность процесса регенерации в боль­шой мере определяется условиями, в

которых он протекает. Важное зна­чение в этом отношении имеет общее состояние


организма. Истощение гиповитаминоз, нарушения иннер­вации и др. оказывают

значительное влияние на ход репаративной регенерации, затормаживая ее и

способствуя пере­ходу в патологическую. Существен­ное влияние на интенсивность

ре­паративной регенерации оказывает степень функциональной нагрузки,

правиль­ное дозирование котоpoй благоприят­ствует этому процессу. Скорость

ре­паративной регенерации в известной мере определяется и возрастом, что

приобре­тает особое значение в связи с увели­чением продолжительности жизни и

соответственно числа оперативных вмешательств у лиц старших воз­растных групп.

Обычно существен­ных отклонений процесса регенерации при этом не отмечается и

большее значе­ние, по-видимому, имеют тяжесть заболевания и его осложнения, чем

возрастное ослабление регенераци­онной способности

Изменение общих и местных усло­вий, в которых протекает процесс регенерации,

может приводить как к количест­венным, так и качественным его из­менениям.

В регуляции процессов регенерации уча­ствуют многочисленные факторы эндо- и

экзогенной природы. Уста­новлены антагонистические влияния различных факторов

на течение внутриклеточных регенераторных и гиперпластических процессов.

Наи­более изучено влияние на регенерацию различ­ных гормонов. Регуляция

митотической активности клеток различ­ных органов осуществляется гормо­нами

коры надпочечников, щитовид­ной железы, половых желез и др. Важную роль в

этом отношении иг­рают так наз. гастроинтестинальные гормоны. Известны мощные

эндоген­ные регуляторы митотической ак­тивности - кейлоны, простландины, их

антагонисты и другие биологически активные ве­щества.

Регенерация - восстановление организмом утраченных или поврежденных органов и тканей, а также восстановление целого организма из его части. В большей

степени присуща растениям и беспозвоночным животным, в меньшей - позвоночным. Регенерацию можно вызвать

экспериментально.

Регенерация направлена на восстановление поврежденных структурных элементов и регенерационные процессы могут

осуществляться на разных уровнях:

а) молекулярный

б) субклеточный

в) клеточный - размножение клеток митозом и амитотическим путем

г) тканевой

д) органный.

Виды регенерации:

7. Физиологическая - обеспечивает функционирование органов и систем в обычных условиях. Во всех органах происходит физиологическая регенерация, но в каких-то больше, в других - меньше.

2. Репаративная (восстановительная) - возникает в связи с патологическим процессов, который приводит к повреждению ткани (это усиленная физиологическая регенерация)

а) полная регенерация (реституция) - на месте повреждения ткани возникает точно такая же ткань

б) неполная регенерация (субституция) - на месте погибшей ткани возникает соединительная ткань. Например, в сердце при инфаркте миокарда происходит некроз, который замещается соединительной тканью.

Смысл неполной регенерации: вокруг соединительной ткани возникает регенерационная гипертрофия, которая и

обеспечивает сохранение функции поврежденного органа.

Регенерационная гипертрофия осуществляется за счет:

а) гиперплазии клеток (избыточное образование)

б) гипертрофии клеток (увеличение органа в объеме и массе).

Регенерационная гипертрофия в миокарде осуществляется за счет гиперплазии внутриклеточных структур.

Формы регенерации.

1. Клеточная - происходит размножение клеток митотическим и амитотическим путем. Она существует в костной ткани, эпидермисе, слизистой ЖКТ, слизистой дыхательных путей, слизистой мочеполовой системы, эндотелий, мезотелий, рыхлая соединительная ткань, кроветворная система. В этих органах и тканях возникает полная регенерация (точно такая же ткань).

2. Внутриклеточная - происходит гиперплазия внутриклеточных структур. Миокард, скелетные мышцы (преимущественно), ганглиозные клетки ЦНС (исключительно).

3. Клеточные и внутриклеточные формы. Печень, почки, легкие, гладкие мышцы, вегетативная нервная система, поджелудочная железа, эндокринная система. Обычно возникает неполная регенерация.

Регенерация соединительной ткани.

Этапы:

1. Образование грануляционной ткани. Постепенно идет вытеснение сосудов и клеток с образованием волокон. Фибробласты - фиброциты, которые продуцируют волокна.

2. Образование зрелой соединительной ткани. Регенерация крови

1. Физиологическая регенерация. В костном мозге.

2. Репаративная регенерация. Возникает при анемиях, лейкопениях, тромбоцитопениях. Появляются экстрамедуллярные очаги кроветворения (в печени, селезенке, лимфатических узлах, желтый костный мозг участвует в кроветворении).

3. Патологическая регенерация. При лучевой болезни, лейкозах. В органах кроветворения образуются незрелые

кроветворные элементы (властные клетки).

Вопрос 16

ГОМЕОСТАЗ.

Гомеостаз – поддержание постоянства внутренней среды организма в непрерывно изменяющихся условиях внешней среды. Т.к. организм – многоуровневый саморегулирующийся объект, его можно рассматривать с точки зрения кибернетики. Тогда, организм – сложная многоуровневая саморегулирующаяся система с множеством переменных.

Переменные входа:

Причина;

Раздражение.

Переменные выхода:

Реакция;

Следствие.

Причина – отклонение от нормы реакции в организме. Решающая роль принадлежит обратной связи. Существует положительная и отрицательная обратная связь.

Отрицательная обратная связь уменьшает действие входного сигнала на выходной. Положительная обратная связь увеличивает действие входного сигнала на выходной эффект действия.

Живой организм – ультрастабильная система, осуществляющая поиск наиболее оптимального устойчивого состояния, которое обеспечивается адаптациями.

Вопрос 18:

ПРОБЛЕМЫ ТРАНСПЛАНТАЦИИ.

Трансплантация- пересадка тканей и органов.

Трансплантация у животных и человека - приживление органов или участков отдельных тканей для замещения дефектов, стимулирования регенерации, при косметических операциях, а также в целях эксперимента и тканевой терапии.

Аутотрансплантация- пересадка тканей в пределах одного организма Аллотрансплантация- пересадка между организмами одного вида. Ксенотрансплантация- пересадка между различными видами.

Вопрос 19

Хронобиология - раздел биологии, изучающий биологические ритмы, протекание различных биологических процессов

(преимущественно циклических) во времени.

Биологические ритмы - (биоритмы), циклические колебания интенсивности и характера биологических процессов и явлений. Одни биологические ритмы относительно самостоятельны (напр., частота сокращений сердца, дыхания), другие связаны с приспособлением организмов к геофизическим циклам - суточным (напр., колебания интенсивности деления клеток, обмена веществ, двигательной активности животных), приливным (напр., биологические процессы у организмов, связанные с уровнем морских приливов), годичным (изменение численности и активности животных, роста и развития растений и др.). Наука о биологических ритмах - хронобиология.

Вопрос 20

ФИЛОГЕНЕЗ СКЕЛЕТА

Скелет рыб состоит из черепа, позвоночника, скелета непарных, парных плавников и их поясов. В туловищном отделе к поперечным отросткам тела причленяются ребра. Позвонки сочленяются друг с другом при помощи суставных отростков, обеспечивая изгиб преимущественно в горизонтальной плоскости.

Скелет земноводных, как и у всех позвоночных, состоит из черепа, позвоночника, скелета конечностей и их поясов. Череп почти сплошь хрящевой (рис. 11.20). Он подвижно сочленен с позвоночником. Позвоночник содержит девять позвонков, объединенных в три отдела: шейный (1 позвонок), туловищный (7 позвонков), крестцовый (1 позвонок), а все хвостовые позвонки срослись, образовав единую косточку - уростиль. Ребра отсутствуют. Плечевой пояс включает типичные для наземных позвоночных кости: парные лопатки, вороньи кости (коракоиды), ключицы и непарную грудину. Он имеет вид полукольца, лежащего в толще туловищной мускулатуры, т. е. не соединен с позвоночником. Тазовый пояс образован двумя тазовыми костями, образованными тремя парами подвздошных, седалищных и лобковых костей, сросшихся между собой. Длинные подвздошные кости причле-нены к поперечным отросткам крестцового позвонка. Скелет свободных конечностей построен по типу системы многочленных рычагов, подвижно соединенных шаровидными суставами. В составе передней конечности. выделяют плечо, предплечье и кисть.

Тело ящерицы подразделено на голову, туловище и хвост. В туловищном отделе хорошо выражена шея. Все тело покрыто роговыми чешуями, а голова и брюхо - крупными щитками. Конечности ящерицы хорошо развиты и вооружены пятью пальцами с когтями. Плечевые и бедренные кости расположены параллельно поверхности земли, вследствие чего тело провисает и касается земли (отсюда и название класса). Шейный отдел позвоночника состоит из восьми позвонков, первый из них подвижно соединен как с черепом, так и со вторым позвонком, что обеспечивает головному отделу большую свободу движений. Позвонки пояснично-грудного отдела несут ребра, часть которых соединена с грудиной, в результате чего образуется грудная клетка. Крестцовые позвонки обеспечивают более прочное, чем у земноводных, соединение с костями таза.

Скелет млекопитающих по строению в основном сходен со скелетом наземных позвоночных, однако имеются некоторые различия: число шейных позвонков постоянно и равно семи, череп более объемный, что связано с большими размерами головного мозга. Кости черепа срастаются довольно поздно, что обеспечивает возможность увеличения головного мозга по мере роста животного. Конечности млекопитающих построены по пятипалому типу, характерному для наземных позвоночных.

Вопрос 21

ФИЛОГЕНЕЗ КРОВЕНОСНОЙ СИСТЕМЫ

Кровеносная система рыб заткнута. Сердце двухкамерное, состоящее из предсердия и желудочка. Венозная кровь из желудочка сердца поступает в брюшную аорту, несущую ее к жабрам, где она обогащается кислородом и освобождается от углекислого газа. Оттекающая от жабр артериальная кровь собирается в спинную аорту, которая расположена вдоль тела под позвоночником. От спинной аорты к различным органам рыбы отходят многочисленные артерии. В них артерии распадаются на сеть тончайших, капилляров, через стенки которых кровь отдает кислород и обогащается углекислым газом. Венозная кровь собирается в вены и по ним поступает в предсердие, а из него желудочек. Следовательно, у рыб один круг кровообращения.

Кровеносная система земноводных представлена трехкамерным сердцем, состоящим из двух предсердий и желудочка, и двух кругов кровообращения - большого (туловищного) и малого (легочного). Малый круг кровообращения начинается в желудочке, включает сосуды легких и завершается в левом предсердии. Большой круг начинается также в желудочке. Кровь, пройдя по сосудам всего тела, возвращается в правое предсердие. Таким образом, в левое предсердие попадает артериальная кровь из легких, а в правое - венозная кровь со всего тела. В правое предсердие попадает и артериальная кровь, оттекающая от кожи. Так благодаря появлению легочного круга кровообращения в сердце земноводных попадает и артериальная кровь. Несмотря на то что в желудочек поступает артериальная и венозная кровь, полного перемешивания крови не происходит благодаря наличию карманов и неполных перегородок. Благодаря им при выходе из желудочка артериальная кровь по сонным артериям поступает в головной отдел, венозная - в легкие и кожу, а смешанная - во все остальные органы тела. Таким образом, у земноводных нет полного разделения крови в желудочке, поэтому интенсивность жизненных процессов невысокая, а температура тела непостоянная.

Сердце у пресмыкающихся трехкамерное, однако полного смешения артериальной и венозной крови не происходит из-за наличия в нем неполной продольной перегородки. Отходящие от разных частей желудочка три сосуда - легочная артерия, левая и правая дуги аорты - несут венозную кровь к легким, артериальную - к голове и передним конечностям, а к остальным частям - смешанную с преобладанием артериальной. Такое кровообеспечение, а также малая способность к терморегуляции приводят к тому, что

температура тела пресмыкающихся зависит от температурных условий окружающей среды.

Высокий уровень жизнедеятельности птиц обусловлен более совершенной системой кровообращения по сравнению с животными предыдущих классов. У них произошло полное разделение артериального и венозного потоков крови. Это связано с тем, что сердце птиц четырехкамерное и полностью разделено на левую - артериальную, и правую - венозную, части. Дуга аорты только одна (правая) и отходит от левого желудочка. В ней течет чистая артериальная кровь, снабжающая все ткани и органы тела. От правого желудочка отходит легочная артерия, несущая в легкие венозную кровь. Кровь быстро движется по сосудам, газообмен происходит интенсивно, выделяется много тепла. Кровеносная система млекопитающих принципиальных отличий от таковой у птиц не имеет, В отличие от птиц, у млекопитающих от левого желудочка отходит левая дуга аорты.

Вопрос 22

РАЗВИТИЕ АРТЕРИАЛЬНЫХ ДУГ

Артериальные дуги, дуги аорты, кровеносные сосуды, закладывающиеся у зародышей позвоночных в виде 6-7 (у круглоротых до 15) парных боковых стволов, отходящих от брюшной аорты. А. д. проходят по межжаберным перегородкам на спинную сторону глотки и, сливаясь, образуют спинную аорту. Первые 2 пары артериальных дуг обычно рано редуцируются, у рыб и личинок земноводных они сохраняются в виде небольших сосудов. Остальные 4-5 пар артериальных дуг становятся жаберными сосудами. У наземных позвоночных из третьей пары артериальных дуг образуются сонные артерии, из шестой - лёгочные. У хвостатых земноводных обычно 4 и 5-я пары артериальных дуг образуют стволы или корни аорты, сливающиеся в спинную аорту. У бесхвостых земноводных и пресмыкающихся дуги аорты возникают только из 4-й пары артериальных дуг, а 5-я редуцируется. У птиц и млекопитающих редуцированы 5-я и половина 4-й артериальных дуг, у птиц аортой становится её правая половина, у млекопитающих - левая. Иногда у взрослых особей сохраняются зародышевые сосуды, соединяющие дуги аорты с сонными (сонные протоки) или с лёгочными (боталловы протоки) артериями.

Вопрос 23

Дыхательная система.

Большинство животных – аэробы. Диффузия газов из атмосферы посредством водного раствора осуществляется при дыхании. Элементы кожного и водного дыхания сохраняются даже в высших позвоночных животных. В ходе эволюции у животных возникли разнообразные дыхательные приспособления – производные кожи и пищеварительной трубки. Жабры и легкие – производные глотки.

ФИЛОГЕНЕЗ ОРГАНОВ ДЫХАНИЯ

Органы дыхания -жабры - расположены на верхней стороне четырех жаберных дуг в виде ярко-красных лепестков. Вода попадает в рот рыбы, процеживается через жаберные щели, омывая жабры, и выводится наружу из-под жаберной крышки. Газообмен осуществляется в многочисленных жаберных капиллярах, кровь в которых течет навстречу омывающей жабры воде.

Дышат лягушки легкими и кожей. Легкие представляют собой парные полые мешки с ячеистой внутренней поверхностью, пронизанной сетью кровеносных капилляров, где и происходит газообмен. Механизм дыхания у земноводных несовершенен, нагнетательного типа. Животное набирает воздух в ротоглоточную полость, для чего опускает дно ротовой полости и открывает ноздри. Затем ноздри закрываются клапанами, дно ротовой полости поднимается, и воздух нагнетается в легкие. Удаление воздуха из легких происходит благодаря сокращению грудных мышц. Поверхность легких у земноводных невелика, меньше поверхности кожи.

Органы дыхания -легкие(рептилии). Их стенки имеют ячеистое строение, что в значительной степени.увеличивает поверхность. Кожное дыхание отсутствует. Вентиляция легких более интенсивная, чем у земноводных, и связана с изменением объема грудной клетки. Дыхательные пути -трахея, бронхи - защищают легкие от иссушающего и охлаждающего воздействия воздуха, поступающего извне.

Легкие птиц представляют собой плотные губчатые тела. Бронхи, войдя в легкие, сильно в них ветвятся до тончайших, слепо замкнутых бронхиол, опутанных сетью капилляров, где

и происходит газообмен. Часть крупных бронхов, не разветвляясь, выходит за пределы легких и расширяется в огромные тонкостенные воздушные мешки, объем которых во много раз превосходит объем легких (рис. 11.23). Воздушные мешки расположены между различными внутренними органами, а их ответвления проходят между мышцами, под кожу и в полости костей.

Дышат млекопитающие легкими, которые имеют альвеолярную структуру, благодаря которой дыхательная поверхность превосходит поверхность тела в 50 раз и более. Механизм дыхания обусловлен изменением объема грудной клетки за счет движения ребер и свойственной млекопитающим особой мышцы - диафрагмы.

Вопрос 24

ФИЛОГЕНЕЗ ГОЛОВНОГО МОЗГА

Центральная нервная система рыб состоит из головного и спинного мозга. Головной мозг у рыб, как у всех позвоночных, представлен пятью отделами: передним, промежуточным, средним, мозжечком и продолговатым мозгом. От переднего мозга отходят хорошо развитые обонятельные доли. Наибольшего развития достигает средний мозг, осуществляющий анализ зрительных восприятий, а также мозжечок, регулирующий координацию движений и сохранение равновесии

Головной мозг земноводных имеет те же пять отделов, что и мозг рыб. Однако отличается от него большим развитием переднего мозга, который у земноводных разделен на два полушария. Мозжечок недоразвит в связи с малой подвижностью и однооб. разным характером движений земноводных.

Головной мозг пресмыкающихся по сравнению с таковым земноводных обладает лучше развитыми мозжечком и большими полушариями переднего мозга, поверхность которого имеет зачатки коры. Это обусловливает разнообразные и более сложные формы приспособительного поведения.

Головной мозг птиц отличается от мозга пресмьгкающихся большими размерами полушарий переднего мозга и мозжечка.

Головной мозг млекопитающих имеет относительно крупные размеры из-за увеличения объема полушарий переднего мозга и мозжечка. Развитие переднего мозга происходит за счет разрастания его крыши - мозгового свода, или коры мозга.

Вопрос 25

ФИЛОГЕНЕЗ ВЫДЕЛИТЕЛЬНОЙ И ПОЛОВОЙ СИСТЕМ

Органами выделения рыб служат парные лентовидные туловищные почки, расположенные в полости тела под позвоночником. Они утратили связь с полостью тела и удаляют вредные продукты жизнедеятельности, отфильтровывая их из крови. У пресноводных рыб конечным продуктом белкового обмена является ядовитый аммиак. Он растворяется большим количеством воды, и поэтому рыбы выделяют много жидкой мочи. Выведенная с мочой вода легко, восполняется за счет ее постоянного поступления через кожу, жабры и с пищей. У морских рыб конечным продуктом азотистого обмена служит менее ядовитая мочевина, выведение которой требует меньшего количества воды. Образовавшаяся в почках моча по парным мочеточникам оттекает в мочевой пузырь, откуда выводится наружу через выделительное отверстие. Парные половые железы - яичники и семенники - имеют выводящие протоки. Оплодотворение у большинства рыб наружное и происходит в воде

Органы выделения земноводных, как и у рыб, представлены туловищными почками. Однако в отличие от рыб они имеют вид уплощенных компактных тел, лежащих по бокам

крестцового позвонка. В почках имеются клубочки, которые отфильтровывают из крови вредные продукты распада (в основном мочевину) и одновременно важные для организма вещества (сахара, витамины и др.). Во время стока по почечным канальцам полезные организму вещества всасываются обратно в кровь, а моча поступает по двум мочеточникам в клоаку и оттуда в мочевой пузырь. После наполнения мочевого пузыря его мышечные стенки сокращаются, моча выводится в клоаку и выбрасывается наружу. Потери воды из организма земноводных с мочой, так же как и у рыб, восполняются поступлением ее через кожу. Половые железы парные. Парные яйцеводы впадают в клоаку, а семявыводящие каналы - в мочеточники.

Органы пресмыкающихся выделения представлены тазовыми почками, в которых общая фильтрационная площадь клубочков небольшая, в то время как протяженность канальцев значительная. Это способствует интенсивному обратному всасыванию отфильтрованной клубочками воды в капилляры крови. Следовательно, выделение продуктов жизнедеятельности у пресмыкающихся происходит с минимальными потерями воды. У них, как и у наземных членистоногих, конечным продуктом выделения является мочевая кислота, требующая для выведения из организма небольшого количества воды. Моча по мочеточникам собирается в клоаку, а из нее в мочевой пузырь, из которого в виде взвеси мелких кристаллов выводится наружу.

Выделение млекопитающих. Тазовые почки млекопитающих сходны по строению таковыми птиц. Моча с большим содержанием мочевины оттекает от почек по мочеточникам в мочевой пузырь, а из него выходит наружу.

Вопрос 26

Филогенез покровов тела:

Основные направления эволюции покровов хордовых:

1) дифференцировка на два слоя: наружный - эпидермис, внутренний - дерму и увеличение толщины дермы;

1) от однослойного эпидермиса к многослойному;

2) дифференцировка дермы на 2 слоя - сосочковый и сетчатый:

3) появление подкожно-жировой клетчатки и совершенствование механизмов терморегуляции;

4) от одноклеточных желез к многоклеточным;

5) дифференцировка различных производных кожи.

У низших хордовых (ланцетник) эпидермис однослойный, цилиндрический, имеет железистые клетки, выделяющие слизь. Дерма (кориум) представлена тонким слоем неоформленной соединительной ткани.

У низших позвоночных эпидермис становится многослойным. Нижний его слой - ростковый (базальный), клетки его делятся и восполняют клетки вышележащих слоев. Дерма имеет правильно расположенные волокна, сосуды и нервы.

Производными кожи являются: одноклеточные (у круглоротых рыб) и многоклеточные (у земноводных) слизистые железы; чешуя: а) плакоидная у хрящевых рыб, в развитии которой принимают участие эпидермис и дерма; б) костная у костных рыб, которая развивается за счет дермы.

Плакоидная чешуя снаружи покрыта слоем эмали (эктодермального происхождения), под которым находятся дентин и пульпа (мезодермального происхождения). Чешуя и слизь выполняют защитную функцию.

У земноводных кожа тонкая гладкая, без чешуи. Кожа содержит большое количество многоклеточных слизистых желез, секрет которых увлажняет покровы и обладает бактерицидными свойствами. Кожа принимает участие в газообмене.

У высших позвоночных в связи с выходом на сушу эпидермис становится сухим, имеет роговой слой.

У рептилий развиваются роговые чешуи, отсутствуют кожные железы.

У млекопитающих: хорошо развиты эпидермис и дерма, появляется подкожно-жировая клетчатка.

Вопрос 27

ФИЛОГЕНЕЗ ПИЩЕВАРИТЕЛЬНОЙ СИСТЕМЫ.

Питаются рыбы разнообразной пищей. Пищевая специализация отражается на строении органов пищеварения. Рот ведет в ротовую полость, в которой обычно имеются многочисленные зубы, расположенные на челюстных, небных и других костях. Слюнные железы отсутствуют. Из ротовой полости пища проходит в глотку, прободенную жаберными щелями, и по пищеводу попадает в желудок, железы которого обильно выделяют пищеварительные соки. У некоторых рыб (карповые и ряд других) желудка нет и пища поступает сразу в тонкий кишечник, где под влиянием комплекса ферментов, выделяемых железами самого кишечника, печени и поджелудочной железы, происходит расщепление пищи и всасывание растворенных питательных веществ. Дифференцировка пищеварительной системы земноводных осталась примерно на том же уровне, что и у их предков - рыб. Общая ротоглоточная полость переходит в короткий пищевод, за ним расположен слабо обособленный желудок, переходящий без резкой границы в кишечник. Кишечник заканчивается прямой кишкой, переходящей в клоаку. Протоки пищеварительных желез - печени и поджелудочной железы - впадают в двенадцатиперстную кишку. В ротоглоточную полость открываются протоки отсутствующих у рыб слюнных желез, смачивающих ротовую полость и пищу. С наземным образом жизни связано появление в ротовой полости настоящего языка - основного органа добычи пищи.

В пищеварительной системе пресмыкающихся лучше, чему земноводных, выражена дифференцировка на отделы. Захват пищи производится челюстями, имеющими для удержания добычи зубы. Ротовая полость лучше, чем у земноводных, отграничена от глотки. На дне ротовой полости расположен подвижный, раздвоенный на конце язык. Пища смачивается слюной, что облегчает ее заглатывание. Пищевод в связи с развитием шеи длинный. Отграниченный от пищевода желудок имеет мускулистые стенки. На границе тонкой и толстой кишок имеется слепая кишка. Протоки печени и поджелудочной

железы открываются в двенадцатиперстную кишку. Время переваривания пищи зависит от температуры тела пресмыкающихся.

Пищеварительная система млекомитающихся. Зубы сидят в ячейках челюстных костей и подразделяются на резцы, клыки и коренные. Ротовое отверстие окружено мясистыми губами, что свойственно только млекопитающим в связи со вскармливанием молоком. В ротовой полости пища, кроме прожевывания зубами, подвергается химическому воздействию ферментов слюны, а затем последовательно переходит в пищевод и желудок. Желудок у млекопитающих хорошо обособлен от других отделов пищеварительного тракта и снабжен пищеварительными железами. У большинства видов млекопитающих желудок разделен на большее или меньшее число отделов. Наиболее сложен он у жвачных парнокопытных. Кишечник имеет тонкий и толстый отделы. На границе тонкого и толстого отделов отходит слепая кишка, в которой происходит сбраживание клетчатки. Протоки печени и поджелудочной железы открываются в полость двенадцатиперстной кишки.

Вопрос 28

Эндокринная система.

В любом организме вырабатываются соединения, разносящиеся по всему организму, имеющие интегративную роль. У растений есть фитогормоны, контролирующие рост, развитие плодов, цветов, развитие пазушных почек, деление камбия и др. Фитогормоны есть у одноклеточных водорослей.

Гормоны появились у многоклеточных организмов, когда возникли специальные эндокринные клетки. Однако химические соединения, играющие роль гормонов, были и раньше. Тироксин, трийодтиронин (щитовидная железа) обнаружены у цианобактерий. Гормональная регуляция у насекомых изучена плохо.

В 1965 году Вильсон выделил инсулин из морской звезды.

Оказалось, что дать определение гормону очень трудно.

Гормон – это специфическое химическое вещество, выделяемое особыми клетками в определенном участке тела, которое поступает в кровь и затем оказывает специфическое действие на определенные клетки или органы-мишени, расположенные в других областях тела, что приводит к координации функций всего организма в целом.

Известно большое количество гормонов млекопитающих. Они делятся на 3 основные группы.

Феромоны. Выделяются во внешнюю среду. С их помощью животные принимают и передают информацию. У человека запах 14 - окситететрадекановой кислоты четко различают только женщины, достигшие половой зрелости.

Наиболее просто организованные многоклеточные организмы – например, губки тоже имеют подобие эндокринной системы. Губки состоят из 2 слоев – энтодермой и экзодермой, между ними располагается мезенхима, в которой содержатся макромолекулярные соединения, характерные для соединительной ткани более высокоорганизованных организмов. В мезенхиме есть мигрирующие клетки, некоторые клетки способны секретировать серотонии, ацетилхолин. Нервная система у губок отсутствует. Вещества, синтезируемые в мезенхиме, служат для связи отдельных частей организма. Координация осуществляется за счет перемещения клеток по мезенхиме. Есть также и перенос веществ между клетками. Заложена основа химической сигнализации, которая характерна для остальных животных. Самостоятельных эндокринных клеток нет.

У кишечнополостных имеется примитивная нервная система. Первоначально нервные клетки выполняли нейросекреторную функцию. Трофическую функцию, осуществляли контроль роста, развития организма. Затем нервные клетки стали вытягиваться и образовали длинные отростки. Секрет выделялся около органа-мишени, без переноса (т.к. не было крови). Эндокринный механизм возник раньше проводникового. Нервные клетки были эндокринными, а потом получили и проводниковые свойства. Нейросекреторные клетки был первыми секреторными клетками.

Первичноротые и вторичноротые вырабатывают одинаковые стероидные и пептидные гормоны. Принято считать, что в процессе эволюции из одних полипептидных гормонов могут возникнуть новые (мутации, дупликации генов). Дупликации менее подавляются естественным отбором, чем мутации. Многие гормоны могу синтезироваться не в одной железе, а в нескольких. Например, инсулин вырабатывается в поджелудочной железе, подчелюстной железе, 12-перстной кишке и других органах. Существует зависимость генов, контролирующих синтез гормонов от положения.

Регенера́ция (восстановление) - способность живых организмов со временем восстанавливать повреждённые ткани, а иногда и целые потерянные органы. Регенерацией также называется восстановление целого организма из его искусственно отделённого фрагмента (например, восстановление гидры из небольшого фрагмента тела или диссоциированных клеток). У протистов регенерация может проявляться в восстановлении утраченных органоидов или частей клетки.

Различают две формы регенерации:

1. Внутриклеточная форма - молекулярная, внутришньоорганоидна и органоидное регенерация.

2. Клеточная регенерация - в основе имеет прямое и косвенное деление клеток.

Физиологическая регенерация - явление универсальное, присущее всем живым организмам, а также органам, тканям, клеткам и субклеточных структур. Принято разделять клетки тканей животных организмов и человека на три основные группы: лабильные, стабильные и статические. К лабильных относят клетки, которые быстро и легко возобновляются в процессе нормальной жизнедеятельности организма. Это клетки крови, эпителия слизистой оболочки ЖКТ, эпидермиса.

Судьба клеток, погибших в процессе жизнедеятельности, неодинакова. Клетки наружных покровов после гибели отшелушиваются. Клетки слизистой оболочки кишок, богаты ферменты, после шелушение входят в состав кишечного сока и принимают участие в пищеварении.

К стабильным клеток относят клетки печени, поджелудочной железы, слюнных желез и др.. Они имеют ограниченную способность к размножению, что проявляется при повреждении органа.

К статическим клеток относят клетки поперечно мышечной и нервной тканей. Клетки статических тканей, как считает большинство исследователей, не делятся. Однако процессы физиологической регенерации в нервных клеток осуществляются на субклеточном, ультраструктурном уровнях. По мышечной ткани, последнее время взгляд несколько изменился. Были открыты так называемые клетки-сателлиты, находящиеся под оболочкой, или сарколеммой, мышечного волокна и способны погружаться внутрь волокна делиться и превращаться в ядра и цито-либо саркоплазму, мышечного волокна.

В процессе физиологической регенерации участвуют также камбиальные клетки, то есть наименее дифференцированные или наименее специализированные, которые дают начало клеткам, постепенно дифференцируются или специализируются. Например, камбиальными клетками эпидермиса кожи являются клетки базального слоя.

Процесс физиологической регенерации присущ всем тканям. Наиболее универсальной его формой является внутриклеточная регенерация. Высокая ее интенсивность обеспечивает продолжительность жизни клеток, соответствует времени жизни всего организма. Физиологическая регенерация сохраняет целостность и нормальную жизнедеятельность отдельных тканей, органов и всего организма.

2.Репаративная регенерация. Ее значение. Способы репаративной регенерации.

Репаративная регенерация может быть типичной (Гомоморфоз) и атипичной (гетероморфоз). При гомоморфози восстанавливается такой же орган, как и потерян. При гетероморфози восстановлены органы отличаются от типовых. При этом восстановление утраченных органов может проходить путем епимор- фозу, морфалаксису, ендоморфозу (или регенерационной гипертрофией), компенсаторной гипертрофией.

Епиморфоз (от греч. ??? - после и????? - форма) - Это восстановление органа путем отрастания от раневой поверхности, подлежащей при этом чувственной перестройке. Ткани, прилегающих к поврежденному участки, рассасываются, происходит интенсивный деление клеток, дающих начало зачатке регенерата (бластемы). Затем происходит дифференцировка клеток и формирования органа или ткани. За типом епиморфозу проходит регенерация конечностей, хвоста, жабр в аксолотля, трубчатые кости от надкостницы после вылущивание диафиза у кроликов, крыс, мышцы от мышечной культи у млекопитающих и др.. К епиморфозу относится и рубцевания, при котором происходит закрытие ран, но без восстановления утраченного органа. Епиморфозна регенерация не всегда дает точную копию удаленной структуры. Такую регенерацию называют атипичной. Отличают несколько разновидностей атипичной регенерации.

Гипоморфоз (от греч. ??? - под, внизу и????? - форма) - регенерация с частичным замещением ампутированной структуры (у взрослого шпорцевых лягушки возникает остеподибна структура вместо конечности). Гетероморфоз (от греч. ?????? - другой, другой) - Появление другой структуры на месте утраченной (появление конечности на месте антенн или глаза у членистоногих).

Морфалаксис (от греч. ????? - форма, вид, ?????, ?? - обмен, смена) - это регенерация, при которой происходит реорганизация тканей с участка, оставшаяся после повреждения, почти без клеточного размножение путем перестройки. Из части тела путем перестройки образуется целая животное или орган меньших размеров. Затем размеры особи, что образовалась, или органа увеличиваются. Морфалаксис наблюдается в основном в низкоорганизованных животных, в то время как епиморфоз - в более високоорганизованых. Морфалаксис является основой регенерации гидр. гидроидных полипов, планарий. Часто морфалаксис и епиморфоз происходят одновременно, в сочетании.

Регенерация, что происходит внутри органа, называется ендоморфозом, или регенерационной гипертрофией. При этом восстанавливается не форма, а масса органа. Например, при краевом ранении печени отделенная часть органа никогда не восстанавливается. Поврежденная поверхность восстанавливается, а внутри другой части усиливается размножение клеток и в течение нескольких недель после удаления 2 / 3 печени восстанавливается исходная масса и объем, но не форма. Внутренняя структура печени оказывается нормальной, ее частички имеют типичный размер и функция органа восстанавливается. Близкой к регенерационной гипертрофии является компенсаторная гипертрофия, или викарная (заместительная). Этот средство регенерации связан с увеличением массы органа или ткани, вызванный активным физиологическим нагрузкам. Увеличение органа происходит за счет деления клеток и их гипертрофии.

Гипертрофия клеток заключается в росте, увеличении числа и размеров органелл. В связи с увеличением структурных компонентов клетки повышается ее жизнедеятельность и работоспособность. При компенса- полуторной гипертрофии отсутствует поврежденная поверхность.

Наблюдается этот вид гипертрофии при удалении одного из парных органов. Так, при удалении одной из почек другая испытывает повышенной нагрузки и увеличивается в размере. Компенсаторная гипертрофия миокарда часто возникает у больных гипертонической болезни (при сужении периферических кровеносных сосудов), при пороках клапанов. У мужчин при разрастании предстательной железы затрудняется выделение мочи и гипертрофируется стенка мочевого пузыря.

Регенерация происходит во многих внутренних органах после различных воспалительных процессов инфекционного происхождения, а также после эндогенных нарушений (нейроэндокринные расстройства, опухолевый рост, действие токсических веществ). Репаративная регенерация в различных тканях проходит по-разному. В коже, слизистых оболочках, соединительной ткани после повреждение происходит интенсивное размножение клеток и восстановление ткани, подобной утраченной. Такую регенерацию называют полной, или pecmu- туцийною. В случае неполного восстановления, при котором замещение происходит другой тканью или структурой, говорят о субституции.

Регенерация органов происходит не только после удаление их части хирургическим путем или в наследствии травмирования (механического, термического и др.), но и после переноса патологических состояний. Например, на месте глубоких ожогов могут быть массивные разрастание плотной соединительной рубцовой ткани, но нормальная структура кожи не восстанавливается. После перелома кости в отсутствие смещения отломков нормальное строение не восстанавливается, а разрастается хрящевая ткань и образуется ненастоящий сустав. При повреждении покровов восстанавливается как соединительнотканная часть, так и эпителий. Однако скорость размножены клеток рыхлой соединительной ткани является более высокой, поэтому эти клетки заполняют дефект, образуют венные волокна и после больших повреждений формируется рубцовая ткань. Чтобы не допустить этого, применяют пересадку кожи, взятой у той же или другого человека.

В настоящее время для регенерации внутренних органов применяют искусственные пористые каркасы, по которым растут ткани, регенерируют. Ткани прорастают через поры и целостность органа восстанавливается. Регенерацией за каркасом можно восстановить кровеносные сосуды, мочеточник, мочевой пузырь, пищевод, трахею и другие органы.

Стимуляция регенерационных процессов. При обычных условий эксперимента у млекопитающих ряд органов не регенерируется (головной и спинной мозг) или восстановительные процессы в них выражены слабо (кости свода черепа, сосуды, конечности). Однако существуют методы воздействия, которые позволяют в эксперименте (а иногда и в клинике) стимулировать регенерационные процессы и применительно отдельных органов добиться полноценного восстановление. К таким воздействиям относится замещения удаленных участков органов гомо-и гетеротранс- плантатом, который способствует заместительной регенерации. Сущность заместительной регенерации заключается в замещении или прорастании трансплантатов регенерационными тканями хозяина. Кроме того, трансплантат является каркасом, благодаря которому направлена??регенерация стенки органа.

Для инициирования стимуляции регенерационных процессов исследователи используют также ряд веществ разнообразной природы - экстракты из животных и растительных тканей, витамины, гормоны щитовидной железы, гипофиза, надпочечников и лекарственные препараты.


Различают два вида регенерации - физио­логическую и репаративную.

Фи­зиологическая регенерация - непрерывное обновление структур на

клеточном (смена клеток крови, эпидермиса и др.) и внутриклеточном (обновле­ние

клеточных органелл) уровнях, которым обеспечивается функциони­рование органов и

Репаративная регенерация - процесс ликвидации структурных повреждений

после действия патогенных факторов.

Оба вида регенерации не являются обособленными, не зависимыми друг от друга.

Значение регенерации для организма опре­деляется тем, что на основе клеточ­ного

и внутриклеточного обновления органов обеспечивается широкий диапазон

приспособительных коле­баний их функциональной активно­сти в меняющихся

условиях окружа­ющей среды, а также восстановле­ние и компенсация нарушенных

под воздействием различных патоген­ных факторов функций.

Процесс регенерации развертывается на раз­ных уровнях организации -

сис­темном, органном, тканевом, клеточ­ном, внутриклеточном. Осуществля­ется

он путем прямого и непрямого деления клеток, обновления внутриклеточ­ных

органелл и их размножения. Обновление внутриклеточных струк­тур и их

гиперплазия являются универсальной формой регенерации, присущей всем без

исключения органам мле­копитающих и человека. Она выра­жается либо в форме

собственно внутриклеточной регенерации, когда после гибели части клетки ее

строение вос­станавливается за счет размножения сохранившихся органелл, либо

в ви­де увеличения числа органелл (компенсаторная гиперплазия органелл) в

одной клетке при гибели дру­гой.

Восстановление исходной массы органа после его повреждения осу­ществляется

различными путями. В одних случаях сохранившаяся часть органа остается

неизмененной или малоизмененной, а недостающая его часть отрастает от раневой

по­верхности в виде четко отграничен­ного регенерата. Такой способ

вос­становления утраченной части орга­на называют эпиморфозом . В других

случаях происходит перестройка оставшейся части органа, в про­цессе которой

он постепенно приоб­ретает исходные форму и размеры. Этот вариант процесса

регенерации называют морфаллаксисом. Чаще эпиморфоз и морфаллаксис

встречаются в раз­личных сочетаниях. Наблюдая уве­личение размеров органа

после его повреждения, прежде говорили о его компенсаторной гипертрофии.

Цитологический анализ этого процесса показал, что в его основе лежит

размножение клеток, т. е. регенераторная реакция. В связи с этим процесс

получил название «регенерацнонная гипертрофия».

Эффективность процесса регенерации в боль­шой мере определяется условиями, в

которых он протекает. Важное зна­чение в этом отношении имеет общее состояние

организма. Истощение гиповитаминоз, нарушения иннер­вации и др. оказывают

значительное влияние на ход репаративной регенерации, затормаживая ее и

способствуя пере­ходу в патологическую. Существен­ное влияние на интенсивность

ре­паративной регенерации оказывает степень функциональной нагрузки,

правиль­ное дозирование котоpoй благоприят­ствует этому процессу. Скорость

ре­паративной регенерации в известной мере определяется и возрастом, что

приобре­тает особое значение в связи с увели­чением продолжительности жизни и

соответственно числа оперативных вмешательств у лиц старших воз­растных групп.

Обычно существен­ных отклонений процесса регенерации при этом не отмечается и

большее значе­ние, по-видимому, имеют тяжесть заболевания и его осложнения, чем

возрастное ослабление регенераци­онной способности

Изменение общих и местных усло­вий, в которых протекает процесс регенерации,

может приводить как к количест­венным, так и качественным его из­менениям.

В регуляции процессов регенерации уча­ствуют многочисленные факторы эндо- и

экзогенной природы. Уста­новлены антагонистические влияния различных факторов

на течение внутриклеточных регенераторных и гиперпластических процессов.

Наи­более изучено влияние на регенерацию различ­ных гормонов. Регуляция

митотической активности клеток различ­ных органов осуществляется гормо­нами

коры надпочечников, щитовид­ной железы, половых желез и др. Важную роль в

этом отношении иг­рают так наз. гастроинтестинальные гормоны. Известны мощные

эндоген­ные регуляторы митотической ак­тивности - кейлоны, простландины, их

антагонисты и другие биологически активные ве­щества.

Заключение

Важное место в исследова­ниях механизмов регуляции про­цессов регенерации

занимает изучение роли различных отделов нервной системы в их течении и

исходах. Новым нап­равлением в разработке этой пробле­мы является изучение

иммунологической ре­гуляции процессов регенерации, и в частности установление

факта переноса лим­фоцитами «регенерационной инфор­мации», стимулирующей

пролиферативную активность клеток различ­ных внутренних органов.

Регули­рующее влияние на течение процесса регенерации оказывает и

Главная проблема состоит в том, что регенерация тканей у человека происходит

очень медленно. Слишком медленно, чтобы произошло восстановление

действительно значительного повреждения. Если бы этот процесс удалось хоть

немного ускорить, то результат оказался бы куда как значительным.

Знание механизмов регуляции регенерационной способности органов и тканей

открывает перспективы для разработки научных основ стимуля­ции репаративной

регенерации и управления процессами выздоровления.